Krassimir Atanassov

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 19, 2013, Number 1, Pages 22—24

**Download full paper: PDF, 118 Kb**

## Details

### Authors and affiliations

Krassimir Atanassov

*Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
*

### Abstract

The inequality *φ*(*n*)*ψ*(*n*)*σ*(*n*) ≥ *n*^{3} + *n*^{2} − *n* − 1. connecting *φ*, *ψ* and *σ*-functions is formulated and proved.

### Keywords

- Arithmetic functions
*φ*,*ψ*and*σ*

### AMS Classification

- 11A25

### References

- Mitrinovic, D., J. Sándor, Handbook of Number Theory, Kluwer Academic Publishers, 1996.
- Nagell, T., Introduction to Number Theory, John Wiley & Sons, New York, 1950.

## Related papers

## Cite this paper

APAAtanassov, K. (2013). Note on *φ*, *ψ* and *σ*-functions. Part 6. Notes on Number Theory and Discrete Mathematics, 19(1), 22-24.

Atanassov, Krassimir. “Note on *φ*, *ψ* and *σ*-functions. Part 6.” Notes on Number Theory and Discrete Mathematics 19, no. 1 (2013): 22-24.

Atanassov, Krassimir. “Note on *φ*, *ψ* and *σ*-functions. Part 6.” Notes on Number Theory and Discrete Mathematics 19.1 (2013): 22-24. Print.