Krassimir Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 19, 2013, Number 1, Pages 22–24
Full paper (PDF, 118 Kb)
Details
Authors and affiliations
Krassimir Atanassov
Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Abstract
The inequality φ(n)ψ(n)σ(n) ≥ n3 + n2 − n − 1. connecting φ, ψ and σ-functions is formulated and proved.
Keywords
- Arithmetic functions φ, ψ and σ
AMS Classification
- 11A25
References
- Mitrinovic, D., J. Sándor, Handbook of Number Theory, Kluwer Academic Publishers, 1996.
- Nagell, T., Introduction to Number Theory, John Wiley & Sons, New York, 1950.
Related papers
- Dimitrov, S. (2023). Lower bounds on expressions dependent on functions φ(n), ψ(n) and σ(n). Notes on Number Theory and Discrete Mathematics, 29(4), 713-716.
- Dimitrov, S. (2024). Lower bounds on expressions dependent on functions φ(n), ψ(n) and σ(n), II. Notes on Number Theory and Discrete Mathematics, 30(3), 547-556.
Cite this paper
Atanassov, K. (2013). Note on φ, ψ and σ-functions. Part 6. Notes on Number Theory and Discrete Mathematics, 19(1), 22-24.