Cheng-Ting Wang
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 299–304
DOI: 10.7546/nntdm.2025.31.2.299-304
Full paper (PDF, 273 Kb)
Details
Authors and affiliations
Cheng-Ting Wang
Independent researcher
2F., No. 382, Daye Rd., Beitou Dist., Taipei City 112029, Taiwan
Abstract
In this paper, we show that when is a primorial and
is Euler’s totient function, the inequality
holds for all positive integer
Keywords
- Euler’s totient function
- Prime numbers
- Primorials
2020 Mathematics Subject Classification
- 11A25
- 11A41
References
- Broadbent, S., Kadiri, H., Lumley, A., Ng, N., & Wilk, K. (2021). Sharper bounds for the Chebyshev function θ(x). Mathematics of Computation, 90(331), 2281–2315.
- Dimitrov, S. I. (2024). Inequalities involving arithmetic functions. Lithuanian Mathematical Journal, 64(4), 421–452.
- Dusart, P. (2010). Estimates of some functions over primes without RH. Preprint. arXiv.org. Available at: https://arxiv.org/abs/1002.0442
- Ghosh, A. (2019). An asymptotic formula for the Chebyshev theta function. Notes on Number Theory and Discrete Mathematics, 25(4), 1–7.
- Nicolas, J.-L. (1983). Petites valeurs de la fonction d’Euler. Journal of Number Theory, 17(3), 375–388.
- Rosser, B. (1939). The n-th prime is greater than n log n. Proceedings of The London Mathematical Society, s2–45(1), 21–44.
- Rosser, B. (1941). Explicit bounds for some functions of prime numbers. American Journal of Mathematics, 63(1), 211–232.
Manuscript history
- Received: 21 October 2024
- Revised: 16 April 2025
- Accepted: 13 May 2025
- Online First: 29 May 2025
Copyright information
Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Ghosh, A. (2019). An asymptotic formula for the Chebyshev theta function. Notes on Number Theory and Discrete Mathematics, 25(4), 1–7.
Cite this paper
Wang, C.-T. (2025). On an inequality about Euler’s totient function. Notes on Number Theory and Discrete Mathematics, 31(2), 299-304, DOI: 10.7546/nntdm.2025.31.2.299-304.