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Abstract: In this paper, we show that when Nk is a primorial and φ(Nk) is Euler’s totient
function, the inequality φ(Nk) <

Nk

eγ log logNk
holds for all positive integer k > 44.
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1 Introduction

Properties of the arithmetic functions are a central topic of number theory. Often, it is not easy
to calculate the value of many common arithmetic functions; besides, the properties of a given
arithmetic function, like the bounds of certain functions for a given value, may lead to important
results, and even in case without such consequences, such inequalities could still be useful for
researchers. As a result, inequalities of arithmetic functions have become a main research area
of number theory, and there have been a number of papers on these inequalities, as summarized
by Dimitrov in 2024 [2]. The focus of the paper is about one of such inequalities, which is about
the maximal value of the Euler’s totient function on a specific subset of positive integers called
primorials, defined as the product of all prime numbers below a specific value.
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Let φ(n) be Euler’s totient function for a positive integer n and γ be the Euler–Mascheroni
constant. Nicolas [5] showed that the following inequality:

φ(n) <
n

eγ log log n
, (1)

holds for infinitely many n unconditionally; however, it is not known if the inequality holds for
all primorials. In this paper, we attempt to prove that the inequality holds for all primorials
n = Nm =

m∏
i=1

pi with m > 44.

Unless otherwise specified, log x indicates the natural logarithm of x, loga x indicates (log x)a,

e denotes the base of the natural logarithm, φ(n) = n
t∏

s=1

(1− 1
ps
) denotes Euler’s totient function

for a positive integer n =
t∏

s=1

pass whenever n ≥ 2, γ = limn→∞(
∑n

k=1
1
k
− log n) denotes the

Euler–Mascheroni constant, whose value is approximately γ ≈ 0.577215, ϑ(x) =
∏

pi≤x

log pi

denotes the first Chebyshev function for x, pk denotes the k-th prime number, Nk =
k∏

i=1

pi denotes

the k-th primorial, i.e., the product of the first k prime numbers.

2 Main results

Lemma 2.1. For all x > e+ 1,

0 < log
( log x

log x− 1

)
< log

( log (x− 1)

log (x− 1)− 1

)
.

Proof. This follows immediately from the fact that log x

log x− 1
= 1 +

1

log x− 1
is strictly decreasing,

and the fact that x < x+ 1.

Lemma 2.2. Assume that pn is the n-th prime number, then(
1− 1

log (n− 1)

)(1+ 1
Pn−1

)

is increasing for all n ≥ 4.

Proof. Assume that for some n ≥ 4, we have(
1− 1

log n

)1+ 1
pn+1−1 ≤

(
1− 1

log (n− 1)

)1+ 1
pn−1

,

then we have(
1 +

1

pn − 1

)
log

( log (n− 1)

log (n− 1)− 1

)
≤

(
1 +

1

pn+1 − 1

)
log

( log n

log n− 1

)
. (2)

Since n ≥ 4 > e+ 1, we have

0 < log
( log n

log n− 1

)
< log

( log (n− 1)

log (n− 1)− 1

)
by Lemma 2.1.

Therefore, we have

1 +
1

pn − 1
<

(
1 +

1

pn − 1

) log log (n−1)
log (n−1)−1

log ( logn
logn−1

)
≤ 1 +

1

pn+1 − 1
. (3)

But (3) implies that pn+1 < pn, which is impossible.
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Therefore, we have(
1− 1

log (n− 1)

)1+ 1
pn−1

<
(
1− 1

log n

)1+ 1
pn+1−1

,

whenever n ≥ 4, thus (
1− 1

log (n− 1)

)1+ 1
pn−1

is increasing for all n ≥ 4.

Corollary 2.1. It holds that

0.73 <
(
1− 1

log (n− 1)

)(1+ 1
pn−1

)

for all n ≥ 43.

Proof. By Lemma 2.2, (
1− 1

log (n− 1)

)1+ 1
pn−1

is increasing for all n ≥ 4.
By calculation using a table of prime numbers and Desmos Graphing Calculator, the 43-rd

prime is 191, and we have(
1− 1

log (43− 1)

)1+ 1
p43−1

=
(
1− 1

log (43− 1)

)1+ 1
191−1

> 0.73.

Therefore,

0.73 <
(
1− 1

log (n− 1)

)(1+ 1
pn−1

)

for all n ≥ 43.

Lemma 2.3. If x ≥ 8, then 0.006788

0.73 · x
1

x−1 − 1
< log x.

Proof. First, define f(x) =
0.006788

0.73 · x
1

x−1 − 1
− log x. Then we have the following claim.

Claim: If x > 1, then x
1

x−1 is decreasing.
Proof of the Claim: We have

d

dx
x

1
x−1 = x

1
x−1

d

dx

log x

x− 1
= x

1
x−1

( 1

x(x− 1)
− log x

(x− 1)2

)
.

By the fact that x−1
x

< log x for all 0 < x, we have 1
x(x−1)

− log x
(x−1)2

< 0, which implies

that d
dx
x

1
x−1 < 0 whenever x > 1. And the claim is proven.

Since x
1

x−1 is decreasing for all x > 0, and 0.73x
1

x−1 − 1 = 0 for some 7.329 < x < 7.33 by
calculation using Desmos Graphing Calculator, this implies that 0.73 · x

1
x−1 − 1 < 0 whenever

x ≥ 8.
Combining this and the fact that log x > 0 for all x > 1 implies that f(x) < 0 whenever

x ≥ 8.
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Lemma 2.4. If m ≥ 43, then (m− m

logm
+1) log pm+1 < ϑ(pm).

Proof. First, define g(x) = x
log log x

4 log2 x
. Then we have the following claim.

Claim: g(x) is increasing when x > ee.
Proof of the Claim: We have

g′(x) =
d

dx
g(x) =

(log log x+ 1
log x

)

4 log2 x
−(log log x)

4

( 2

log3 x

)
=

(log log x)(log x− 2) + 1

4 log3 x
.

When x > ee, we have log x > e, which implies that log x − 2 > e − 2 > 0 and
log log x > log e = 1, thus whenever x > ee, we have

g′(x) =
(log log x)(log x− 2) + 1

4 log3 x
>

(1)(−1 + 1)

4 log3 x
= 0.

Therefore, we have g′(x) > 0 for all x > ee, which implies that g(x) is increasing for all
x > ee, thus proving the claim.

Also, for m > 6, we have the following (Ghosh, [4]):(
m− m

logm
+m

log logm

4 log2m

)
log pm+1 < ϑ(pm). (4)

Since g(m) is increasing for all m = x > ee > 6, and we have m
log logm

4 log2 m
> 1 for m ≥ 43 > ee

by calculation using Desmos Graphing Calculator, thus for all m ≥ 43, we have(
m− m

logm
+ 1

)
log pm+1 <

(
m− m

logm
+m

log logm

4 log2m

)
log pm+1 < ϑ(pm). (5)

This completes the proof.

Theorem 2.1. If m > 44, then φ(Nm) <
Nm

eγ log logNm
.

Proof. Assume that m > 44 and m is the smallest number such that φ(Nm) >
Nm

eγ log logNm
.

Then by definition of m, we have φ(Nm−1) <
Nm−1

eγ log logNm−1
.

By the multiplicativity of Euler’s totient function, we have

Nm

eγ log logNm

< φ(Nm) = φ(Nm−1)φ(pm) = φ(Nm−1)(pm − 1) <
Nm−1(pm − 1)

eγ log logNm−1

,

which implies that
pm

eγ log logNm

<
pm − 1

eγ log logNm−1

. (6)

From (6), we have (
1 +

1

pm − 1

)
log logNm−1 < log logNm.
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Since logNk = log
k∏

i=1

pi =
k∑

i=1

log pi = ϑ(pk) for all positive integer k, we have

(ϑ(pm−1))
(1+ 1

pm−1
) = (logNm−1)

(1+ 1
pm−1

) < logNm = ϑ(pm). (7)

Since m > 44, by Lemma 2.3, the fact that m−1 ≥ 44 > 6, k log k < pk when k ≥ 1 (Rosser,
[6]), pk < k(log k+log log k) when k ≥ 6 (Rosser, [7]) and k

(
1− 1

log k
+ log log k

4 log2 k

)
log pk+1 < ϑ(pk)

when k ≥ 6 (Ghosh, [4]), (7) implies that

ϑ(pm) > (ϑ(pm−1))
(1+ 1

pm−1
)

>
((

m− 1− m− 1

log (m− 1)
+ (m− 1)

log log (m− 1)

4 log2 (m− 1)

)
log pm

)1+ 1
pm−1

>
((

m− 1− m− 1

log (m− 1)
+ 1

)
log pm

)1+ 1
pm−1

>
((

m− m

log (m− 1)

)
(logm+ log logm)

)1+ 1
pm−1

=
((

1− 1

log (m− 1)

)
m(logm+ log logm)

)1+ 1
pm−1

>
((

1− 1

log (m− 1)

)
pm

)1+ 1
pm−1

.

(8)

Also, since we have |x− ϑ(x)| ≤ 0.006788x

log x
for all x ≥ 10544111 (Dusart, [3]), and since

ϑ(x) < x for all x < 1019 (Broadbent et al., [1]), we have ϑ(x) ≤ x(1 +
0.006788

log x
) for every

positive integer x. Thus (8) implies((
1− 1

log (m− 1)

)
pm

)1+ 1
pm−1

< ϑ(pm) ≤ pm

(
1 +

0.006788

log pm

)
=⇒ 0.73 · p

1
pm−1
m <

(
1− 1

log (m− 1)

)1+ 1
pm−1

p
1

pm−1
m ≤ 1 +

0.006788

log pm
.

(9)

But (9) implies that

log pm <
0.006788

0.73 · p
1

pm−1
m − 1

. (10)

Since m > 44, we have pm > 193 > 8, (10) leads to a contradiction with Lemma 2.3.

Therefore, if m > 44, then φ(pm#) <
pm#

eγ log log pm#
.
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