Zafer Şiar, Florian Luca and Faith Shadow Zottor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 256–268
DOI: 10.7546/nntdm.2025.31.2.256-268
Full paper (PDF, 275 Kb)
Details
Authors and affiliations
Zafer Şiar
![]()
Department of Mathematics, Bingöl University
Bingöl, Türkiye
Florian Luca
![]()
Mathematics Division, Stellenbosch University
Stellenbosch, South Africa
Faith Shadow Zottor
![]()
Department of Mathematics, University of Johannesburg
Johannesburg, South Africa
Abstract
Let
and let
be the
-generalized Pell sequence defined by
![]()
for
with initial conditions
![]()
In this study, we look at the equation
in positive integers
such that
and show that it has only trivial solution, namely ![]()
Keywords
- Baker’s method
- Exponential Diophantine equation
- Fibonacci numbers
- Lucas numbers
- Linear forms in logarithms
2020 Mathematics Subject Classification
- 11B39
- 11D61
- 11J86
References
- Baker, A., & Davenport, H. (1969). The equations
and
. The Quarterly Journal of Mathematics, Ser. (2), 20(1), 129–137. - Bravo, J. J., Gómez, C. A., & Luca, F. (2016). Powers of two as sums of two k-Fibonacci numbers. Miskolc Mathematical Notes, 17(1), 85–100.
- Bravo, J. J., & Herrera, J. L. (2020). Repdigits in generalized Pell sequences. Archivum Mathematicum (Brno), 56, 249–262.
- Bravo, J. J., Herrera J. L., & Luca, F. (2021). Common values of generalized Fibonacci and Pell sequences. Journal of Number Theory, 226, 51–71.
- Bravo, J. J., Herrera, J. L., & Luca, F. (2021). On a generalization of the Pell sequence. Mathematica Bohemica, 146(2), 199–213.
- Bravo, J. J., & Luca, F. (2013). Coincidences in generalized Fibonacci sequences. Journal of Number Theory, 133(6), 2121–2137.
- Bugeaud, Y. (2018). Linear Forms in Logarithms and Applications. IRMA Lectures in Mathematics and Theoretical Physics, Vol. 28. European Mathematical Society, Zurich.
- Bugeaud, Y., Mignotte, M., & Siksek, S. (2006). Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Annals of Mathematics, 163, 969–1018.
- Dujella, A., & Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. The Quarterly Journal of Mathematics, Ser. (2), 49(3), 291–306.
- Guzmán Sánchez, S., & Luca, F. (2014). Linear combinations of factorials and S-units in a binary recurrence sequence. Annales Mathématiques du Québec, 38(2), 169–188.
- Kılıc¸, E., & Tas¸cı, D. (2006). The generalized Binet formula, representation and sums of the generalized order-k Pell numbers. Taiwanese Journal of Mathematics, 10(6), 1661–1670.
- Marques, D. (2013). The proof of a conjecture concerning the intersection of k-generalized Fibonacci sequences. Bulletin of the Brazilian Mathematical Society, New Series, 44, 455–468.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izvestiya: Mathematics, 64(6), 1217–1269.
- Noe, T. D., & Vos Post, J. (2005). Primes in Fibonacci n-step and Lucas n-step sequences. Journal of Integer Sequences, 8(4), Article 05.4.4.
- Şiar, Z., Keskin, R., & Öztaş, E. S. (2023). On perfect powers in k-generalized Pell sequence. Mathematica Bohemica, 148(4), 507–518.
- De Weger, B. M. M. (1989). Algorithms for Diophantine Equations. CWI Tracts 65, Stichting Maths. Centrum, Amsterdam.
- Wu, Z., & Zhang, H. (2013). On the reciprocal sums of higher-order sequences. Advances in Continuous and Discrete Models, 2013, Article 189.
Manuscript history
- Received: 21 March 2025
- Revised: 5 May 2025
- Accepted: 8 May 2025
- Online First: 9 May 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
-
Taher, H. S., & Dash, S. K. (2025). On sums of k-generalized Fibonacci and k-generalized Lucas numbers as first and second kinds of Thabit numbers. Notes on Number Theory and Discrete Mathematics, 31(3), 448-459.
Cite this paper
Şiar, Z., Luca, F., Zottor, F. S. (2025). Common values of two k-generalized Pell sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 256-268, DOI: 10.7546/nntdm.2025.31.2.256-268.
