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Abstract: Let £ > 2 and let (Pék))nzg_k be the k-generalized Pell sequence defined by
k k k
P® =2p® + P®, ...+ ¥,
for n > 2 with initial conditions

= pP® = p® —0, and PV = 1.

(k) ) _
P ey ==

_ plk
“k-2) = P

) = pWin positive integers n, m, k, [ suchthat2 <[ < k

In this study, we look at the equation pF
and show that it has only trivial solution, namely n = m.
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1 Introduction

Let k be integer with k£ > 2. The k-generalized Pell sequence (Pék))nzg_k is defined by
k k k
P® =2p® 4 p® 4.4 pB)

for n > 2 with the initial conditions PE’&_Q) = Pfk&_g) =...= Pfkl) = Pék) = (0 and Pl(k) = 1.
This sequence has been studied recently in various papers (see, for example, [3-5, 15]).
In particular, what is of interest are Diophantine equations with members of such a sequence.
A similar sequence is the sequence of k-generalized Fibonacci numbers denoted by (Fék))nzg,k
and defined by

F = F, + 4o+ B,

for n > 2 with the initial conditions F'y) , = FU) _, = = F% = F{" = 0and F{" = 1.

Clearly, for £ = 2 we obtain the classical Fibonacci sequence (F},),>o. In [6], Bravo and Luca,
and independently in [12], Marques, have found all positive integers which occur in two different
generalized Fibonacci sequences, which had been a problem proposed by Noe and Von Post [14].
Additionally, in [4], the authors have determined all the solutions of Diophantine equation

P = B

in positive integers n, k,m,l > 2.
In this paper, we solve the problem treated independently in [6], and [12] for the k-generalized
Pell sequences. Here is our theorem.

Theorem 1.1. Let n, m, k, [ be positive integers such that 2 < | < k and
P® = pW), (1)
Thenn =m <[+ 1.

Kili¢ [11] proved that
P = Fyny 2)

forall 1 < n < k + 1. In Equation (1), if one of n < k + 1 or m < [ 4+ 1 holds, then
Pék) = Pﬁ) is a Fibonacci number. In this case, by the Theorem 1 given in [4], we can see that
n =m < min{k + 1,/ + 1} . Thus, in order to prove our theorem, it suffices to show that there
are no solutions withn > k+2and m > [ + 2.

2 Preliminaries

The characteristic polynomial of the sequence (Pr(bk))nzg, k18
Up(z) =ah =221 — 22— — 1 3)

From Lemma 1 of [17] we know that this polynomial has exactly one positive real root located
between 2 and 3. We denote the roots of the polynomial in (3) by a, as, . . ., ay. Particularly, let
a := «a(k) = o denote the positive real root of Uy, (x). This is called the dominant root of Wy, (x).
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The other roots are strictly inside the unit circle. The Binet’s formula for the k-generalized Pell
numbers appears in [5] and is given by

O{j—l
o — 1+ k(o — 3oy + 1)

WE

P® — al. (4)
j=1
It was also shown in [5] that the contribution of the roots inside the unit circle to the right-hand

side of formula (4) is very small, more precisely the inequality

1
‘Pék) — gk(a)a”‘ <3 (%)
holds for all n > 2 — k, where
z—1
= . 6
96 = T sk k1 ©)
From [3], we can derive the inequality,
2
91(0g)| < == ™
valid forall K > 3and 2 < j < k, and
g ()] <1 )]
valid for 1 < 7 < k. The following relation between o and Pé’“) given in [5]
an—? S Prgk‘) S an—l (9)

holds for all n > 1.
The following result from the proof of the Lemma 9 given in [15]. In what follows,
¢ := (1 ++/5)/2 is the Golden section.

Lemma 2.1. Let n < ©*/>72 and let o be the dominant root of the polynomial Vy(z). Then
2n
n ' 0 2n
a)a” = + + + 1o, 10
gr(a) py Rvens B (10)
where 6 and 1 are real numbers such that
2n
© 4k
0] < = and |n| < —. (11)
Ok /2 oF
Furthermore,
2 | " (12)
a" — T < .
| o

Lemma 2.2 ([5], Lemma 3.2). Let k, | > 2 be integers. Then

(@) If k > [, then a(k) > «(l), where a(k) and «(l) are the values of « relative to k and I,
respectively.

b) P2(1—p7F) < a < ¢?

© gr(¥*) = ;13-

(d) 0.276 < gp(a) < 0.5.

To solve our equation, we use linear forms in logarithms and Baker’s theory. For this, we will
give some notations, lemmas and a theorem.
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Let 7 be an algebraic number of degree d with minimal polynomial
d
aor® + a4+ -+ ayg = ag H (ZE — n(’)) € Z[x],
i=1

where the a;’s are integers with gcd(ag, ..., a,) = 1 and ay > 0 and n’s are the conjugates
of . Then

1 ’ |
h(n) = p (logao—l—Zlog (max{|77(’)|,1})> (13)
i=1

is called the logarithmic height of 7. In particular, if » = a/b is a rational number with
ged(a,b) = 1and b > 1, then h(n) = log (max {|al, b}) .
We give some properties of the logarithmic height whose proofs can be found in [7]:

h(n£7) < h(n) + h(y) +log2,

h(ny™') < h(n) + h(y), (14)
h(n™) = |m|h(n).

Now, from Lemma 6 given in [4], we can deduce the estimate
h(gx(a)) < 5logk for k > 2, (15)

which will be used in the proof of Theorem 1.1.
We next give a theorem deduced from Corollary 2.3 of Matveev [13], which provides a large
upper bound for the subscript n in Equation (1) (also see Theorem 9.4 in [8]).

Theorem 2.1. Assume that v1,7s, ..., are positive real algebraic numbers in a real algebraic
number field K of degree D, by, bs, . .., b, are rational integers, and

A=t -1
is not zero. Then
|A| > exp (—1.4- 30" - t*% . D*(1 +log D)(1 + log B) A1 Ay - -+ Ay)
where B > max {|b1|,...,|b|} and A; > max {Dh(v;), |log~i|, 0.16} foralli =1, ... ,t.

In [9], Dujella and Peth$ proposed a reduction method based on an argument of Baker and
Davenport [1]. Later the authors of [2], proved the following lemma, which is an immediate
variation of the result due to Dujella and Pethd from [9]. This lemma is based on the theory of
continued fractions and will be used to lower the upper bound obtained by Theorem 2.1 for the
subscript n in Equation (1).
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Lemma 2.3. Let M be a positive integer, let p/q be a convergent of the continued fraction
expansion of the irrational number -~y such that ¢ > 6M, and let A, B, 1 be some real numbers
with A > 0and B > 1. Let € := ||ugq|| — M||vql||, where || - || denotes the distance from x to the
nearest integer. If € > 0, then there exists no solution to the inequality

0<|uy—v+pul <AB™Y,

in positive integers u, v, and w with

log(Aq/e)

u < M and w > log B

The following lemma can be found in [16].

Lemma 24. Leta, x € R.If0 < a < land |z| < a, then

—log(l —a
|10g(1+x)|<—g(a ) Jaf
and
< -le® —1].
7] < T e = 1

Finally, we give the following lemma, which can be found in [10].

Lemma 2.5. Ifm > 1, T > (4m*)™ and — < T, thenxz <2™-T - (logT)™.

(log )
2.1 The proof of Theorem 1.1

Assume P = P holds with positive integers m,n, k, I suchthat2 < [ < k. If1 < n < k+1,
then we have Pr(nl) = PT(Lk) = F,, 1 by (2). The equation P,%) = F5,_1 has only the solution
(m,l,n) = (m,l,m) for 1 < m < [+ 1 by Theorem 1 given in [4]. Then we suppose that
n > k + 2, which implies that n > 5. If 1 < m < [+ 1, then we have P,(Lk) = P,Sp = Fy1
by (2). The equation Pék) = F5,,—1 has no solutions by Theorem 1 given in [4] since n > k + 2.
Then we suppose that m > [ + 2, which implies that m > 4. Let « = «(k) and 5 = «(l),
respectively, be positive real roots of ¥, (z) and W¥;(x) given in (3). Then 2 < a < ¢? < 3 and
2 < 8 < p? < 3by Lemma 2.2 (b). Using (9), we get

an—? S Pék) _ Pr(’f) S 6m—1’

and
6m72 < Py(,f) — Pék) < Oénfl.

Performing some calculations, we obtain

1
n< 24 (m— 1188 g (16)
log o
and, similarly,
m < 1.8n. (17)
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We now rearrange Equation (1) using inequality (5). Thus, we have

lgr(@)a” — gi(B)B™ = |gr(a)a” — P + BY — g/(8)5™] (18)
< ‘Pék)—gk(&)an‘ + ‘Pﬁ) — q(B)B™]
1 1

If we divide both sides of inequality (18) by ¢;(3)5™, from Lemma 2.2, we get

1 1 3.63

e(e)a )8 1] < alB)pm = 0276 pm ~ pm

(19)
In order to use Theorem 2.1, we take ¢t := 3 and

(71ab1) = (a,n), (72762) = (6’ _m)’ (737b3) = (gk(a)(gl(ﬁ))_lv 1) :

The number field containing 7,72, and 73 is K = Q(«, 8), which has degree D = [K : Q] <
k-1 < k%. We show that

Ay = gr(a)(@(B) tampT™ =1
is nonzero. Assume that A; = 0. Then
a"gr(a) = gi(B)B™,

that is,

n

' a1 f-1 . (20)

(k+1)a2—3ka+k—1a (l+1)ﬁ2—3l5+l—1ﬁ

Conjugating the above equality by some automorphism belonging to the Galois group of the

splitting field of W (z) and ¥;(x) over Q and taking absolute values, we get

_‘ pi—1
I+ 1) =318+ 1 -1

forl<i<kandl <j <[l LetL=Q(a,an,...,a 51, pa,...,[) be the normal closure of
K and let 01, 09, ..., 0} be elements of Gal(IL/Q) such that o;(«) = «;. Then 01, 09, . . ., 0% map

Oéz'—l n
Q.
(k+1)a? —3ka; +k—1"

B3 21)

the elements from the list in the left of (21) to the same list, as well as to the elements from the
list in the right of (21). Since k£ > [, there exist ¢ # j in {1,2,..., k} such that 0;(58) = o;(5).
Now appliying Jj_lai to the Equation (20), we get that if we put O'j_l(Oéi) = qy, then s # 1. If it
were not, then ; = o;(a;) = «;, which is not possible for i # j. Thus, s # 1. Furthermore,
since 05! (03(3)) = 3, it follows that

_ p-1
‘(l+1)ﬁ2—3lﬁ+l—1

o — 1 n
a
(k+1)a2 —3ka,+k—17°

g™l . (22)

Besides, according to (5), we can see that

1 1 1
m P(l)__> m—2__>2m—2__ 22__
aB)B™ > Byl =5 28 52 5> 5> 5
that is, the right side of (22) is greater than 7/2. But, the left side of (22) is less than 1 since
las] < 1for s # 1and |gx(c)| < 1 by (8). This is impossible. Therefore, A; # 0.
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Moreover, since

by (13) and

hge(a)((8)) ") < h(ge(@)) + h((9:(B)) < blogk + 5logl < 10log k

by (15), we can take A; := klog3, Ay := klog3, and A := 10k? log k. Also, since n < 1.8m,
it follows that B := 1.8m. Thus, taking into account inequality (19) and using Theorem 2.1, we
obtain

3.63
5—m > Ay
> exp (—C - D*(1+1log D)(1 + log 1.8m) (klog 3) (klog 3) (10k* log k))
and so

mlog B —log(3.63) < C - k*-3logk - 3logm - (klog3) (klog3) (101@2 log k:) ,

where C' := 1.4 - 30 - 3*° and we have used the fact that D? < k%2 < k* 1 +logD <
1+logk? < 3logk for k > 3 and 1 + log 1.8m < 3logm for m > 4. From the last inequality, a
quick computation with Mathematica yields

mlog B < 1.56 - 10" - k% - (log k)? - log m,

or
<2.251-10" - k® - (log k)2 (23)

logm
By Lemma 2.5, inequality (23) yields that

m<2-T-log(T),
where T := 2.251 - 10" - k% - (log k)?. Performing the necessary calculations, we get
m < 2.39-10" - k% - (log k)? (24)

valid for k > 3.
Let k € [3,2600]. Then, we obtain n < 1.8m < 4.37 - 10% from (24). We now reduce this
upper bound on n by applying Lemma 2.3. Let

z1 :=nloga — mlog B + log [gk(a)(gz(ﬁ))_l}

and z := e** — 1. Then, from (19), it is seen that

3.63
Ea
for m > 4. Choosing a := 0.25, we get the inequality

log(100/75) 3.63  4.18
(025)  pm = pm
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by Lemma 2.4. Thus, it follows that

_ 4.18
0 < |nloga — mlog B + log [gi(a)(g(B)) ]| < B
Dividing this inequality by log 3, we get
O<|ny—m+p <A-B™Y, (25)
where | | .
o= Oga’ W= 08 [9x(c)(eu(5)) ], A:=6.04, B:=(,and w := m.
log log
It can be easily seen that loga is irrational. If it were not, then we could write logar _ @ for some
log 3 log b

positive integers a and b. This implies that a® = 3%, which is wrong since o’ has k conjugates
and £ has | < k conjugates. Now, put

M :=4.37-10%,

which is an upper bound on n since n < 1.8m < 4.37 - 10%. We find that ¢;9, the denominator
of the 109-th convergent of v exceeds 6/. We also obtained ¢ > 8.02 - 10~%. Furthermore, a
computation with Mathematica gives us the inequality
log (Aqiog/€)
< [ ———
log B
This gives that n < 1.8m = 5426 for all k& € [3,2600]. A computation with Mathematica gives
us that the equation PY(Lk) = Py(,i) has no solution in the range n > k + 2 and m > [ + 2. This
completes the analysis in the case k € [3,2600] .

< 3014.

From now on, we can assume that £ > 2600. Then we can see from (24) that the inequality
n<1.8m <4.302-10% - k% . (logk)® < @"?72 < /2 (26)

holds for £ > 2600. Thus, by Lemma 2.1, we have

2n
n ' 0 2n
a)a” = + + + no, 27
gr(a) pys Rvens Bl 27)
where ¢ and 7 are real numbers such that
2n
% 4k
The case m < !/272.
In this case, we have
(B)8™ = L S (29)
a1 _<,D+2 ot 2 mey 1101,
where ¢ and 7 are real numbers such that
2m
Y 41
|01] < 7 and |m| < ] (30)

by Lemma 2.1.
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So, from (27) and (29), we obtain

S0271

42

|5’ 2
— + "4 ) 31
512 Inl ¢ n] 0] (31)

902"< 1 N 4k +4k’>
o2\ oo Tz T gk

2n
¥
<
wkﬂ

gr(a)a™ —

IA

and

2m

< |61]
- w42

p2m 1 4l 4l
JE\pr2 GE TG

9_(p2m
Vﬂ/2 ’

a(p)pm — 2 + | ™™ + | [61] (32)

p+2

IN

where we have used the fact that

1 4k 4k
—_— —+ — <1 for £ > 2600
o+2 2 Pk

and
—1 +—4l+—4l<9 for [ > 2
or .
o+2 P2 Y -

Using the inequalities (18), (31), and (32), we can see that

¢2n ¢2nl 2n g0277’1
00— o +aaa + £ 0@+ ) - £

< Jot@ar = 25|+ la@m - £5| +lataa” - aesm

< iz;+9¥ﬁfﬁ+1

< & (g * ot ) 3

Since m > [ + 2, it follows that 2m > 20 + 4 > /2. Also, k > [ and P* = P! implies that
n < m. Therefore, ?™2n+k/2 > H2HR/2 5 2412 Thus, from (33), we get

¢2n ¢2m o 1 9 1
‘w+2_¢+2 =Y (@%Q+¢”+ww) Y
m (P 2+9+1

< ¥ < P2 )
10.4 - p*™

< ——2;7?——

2m
Dividing both sides of the above inequality by (;0+ 5 we get

104 (p+2)  37.63

2n—2
L= o/ < oz

(35)
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On the other hand, since

1

2n—2m —1— ——
2

1 1
1—o¢ >1——2>0.618>—,
%) 2

the inequality (35) gives
1 37.63

5 < W, and so [ < 18.
Thus, we obtain m < ¢"/?72 < ¢7 < 29.1, which contradicts the fact that 2600 < k < n—2 < m.

The case m > !/272.

In this case, we have
% < 6.26-10" -k - (logk)?

from (24). Since the inequality 6.26 - 105 - k® - (log k)® < k!4 holds for k& > 2600, it follows that
¢!/? < k' which implies that
[ <41logk. (36)

On the other hand, using (18) and (31), we can see that

2n 2n
a@)F" = 5| = |al®)B" = g+ anla)e” — gefa)a”
2n
< |gr(a)a™ — 512 +191(8)B™ — gr(a)a”|
2n
< % + 1.

2n

Dividing both sides of the last inequality by ﬁ, we get

+2 +2
¥ +90

Spk/2 QO2n
2+4 _ 724
ka/Q S0k:/2’

Vha(B)B 2 — 1 37)

where we have used the fact that n > k + 2 and so 2n > k/2. Now, we show that the number
Ay = V5gi(B)BMp~ 2"t — 1 is nonzero. Assume that A, = 0. Then, we get 5¢7(3) =
@"2372m ¢ Ok, where Ox the ring of integers of the field K = Q(v/5, 3). It is clear that
592(8) < 5/4 by Lemma 2.2 (d). Also, by (7), we have

2

lg1(B:)] < )

20
5. Let[ > 7. Then, we can see that

for2 < i <landl > 4.1t follows that 5 |g?(3;)| < (==

2 - 5 20 \'"' 5 /4\°
| Now)/e (597 (8))] = Hf) lgf (8] < 5 (W) <7 (g) <1
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So, 5g7(3) is not an algebraic integer. This contradicts 5g7(3) € Og. Also, it can be checked
with Mathematica that 5g7(3) is not an algebraic integer for [ € {2, 3,4, 5,6} . Therefore, Ay # 0.
Now, we can apply Theorem 2.1. In order to use Theorem 2.1, we take ¢ := 3, and

(Vlvbl) = (ﬁ>m)7 (’72’b2) = (907 —2n+ 1)’ (737173) = (ﬁgl(B% 1> .

The number field containing 71, y2, v is K, which has degree D = [K : Q] < 2I. Moreover,
since

1 1 1
non) = h(g) = 82 < B3 y) = i) = B2

and

h(v3) < h(V/5) + h(gi(B)) < log V5 + 5logl < 6.5 - log
by (14) and (15), we can take A; := log9, As := llogp, and A3 := 13llogl. Also, since
m < 1.8n, we can take B := 2n — 1. Thus, taking into account inequality (37) and using
Theorem 2.1, we obtain

724072 > |A
> exp (—C - (20)*(1 4 log(2n — 1))(1 4 log 21) (log 9) (I log ) (13l 1og)) ,

where C' := 1.4 - 30° - 3*5. This implies that
k< 2.62-10"-1* (logl)? - logn, (38)

where we have used the fact that (1 + log(2n — 1)) < 2logn for n > k + 2 > 2602 and
1+ log2l < 4loglforl > 2.
Now, let
2 :=mlog B — (2n — 1)log ¢ + log(v/5g1(B))

and z := 1 — e¢*2. Then

7.24
|$| = |1 —€Z2| < T/2 < 0017
¥

by (37) since k > 2600. Choosing a := (.01, we obtain the inequality

- log(100/99) 7.24  7.28
|z9] = |log(z + 1) < 001 . 2 < L

by Lemma 2.4. That is,

7.28
0 < [mlogf — (2n —1)log ¢ + log (\/59;(5))‘ < oR/2

Dividing both sides of the above inequality by log ¢, it is seen that
O<|my—(2n—-1)+pu/<A-B™", (39)

where

g8 log (v5a(3))

= e , A:=15.13, B:=p,and w := k/2.
log ¢ log ¢
It is clear that log f is irrational. If it were not, then logf_a for some positive integers a and b.
log log ¢ b

266



Thus, we get that 3° = 2, which is false. That is, for [ > 3, 3° has more conjugates than ¢?,
whereas for [ = 2, we have that 5 = 1+ v/2 is a quadratic unit living in a different quadratic field
than . Therefore, og logf
from (36) and (38) that

1s irrational. Besides, since [ < 63log k by (36) and n < m, it follows

k< 2.62-10" - (41logk)" - (log (411og k))? - log (4.302 - 10 - &% - (log k)*)

which implies that
k < 1.06 - 103,

Substituting this bound of % into (24) and (36), we get
m < 1.68-10%°

and
[ < 3118.

If we take M := 1.68 - 10?85, which is an upper bound on m, we find that gsg4, the denominator
of the 584-th convergent of v exceeds 6/. Furthermore, a quick computation with Mathematica

gives us that the value
log (Agssa/€)

log B
is less than 11320. So, if (39) has a solution, then

E log(A
F . og (Agsss/€)

< 7736.85
2 log B ’

that is, k¥ < 15473. Hence, from (24), we get m < 2.39 - 10 - k% - (log k)3, which implies that
m < 7.05-10°L. Also, I < 41logk < 396 by (36). If we apply again Lemma 2.3 to inequality
(39) with M := 7.05 - 10°!, we find that ¢;4, the denominator of the 114-th convergent of -
exceeds 6. After doing this, then a quick computation with Mathematica shows that inequality
(39) has solutions only for £ < 2180. This contradicts the fact that £ > 2600. Thus, the proof is
complete.
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