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Abstract: Let k ≥ 2 and let (P (k)
n )n≥2−k be the k-generalized Pell sequence defined by

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · ·+ P

(k)
n−k

for n ≥ 2 with initial conditions

P
(k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
−1 = P

(k)
0 = 0, and P

(k)
1 = 1.

In this study, we look at the equation P
(k)
n = P

(l)
m in positive integers n,m, k, l such that 2 ≤ l < k

and show that it has only trivial solution, namely n = m.
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1 Introduction

Let k be integer with k ≥ 2. The k-generalized Pell sequence (P
(k)
n )n≥2−k is defined by

P (k)
n = 2P

(k)
n−1 + P

(k)
n−2 + · · ·+ P

(k)
n−k

for n ≥ 2 with the initial conditions P (k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
−1 = P

(k)
0 = 0 and P

(k)
1 = 1.

This sequence has been studied recently in various papers (see, for example, [3–5, 15]).
In particular, what is of interest are Diophantine equations with members of such a sequence.
A similar sequence is the sequence of k-generalized Fibonacci numbers denoted by (F

(k)
n )n≥2−k

and defined by
F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k

for n ≥ 2 with the initial conditions F (k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
−1 = F

(k)
0 = 0 and F

(k)
1 = 1.

Clearly, for k = 2 we obtain the classical Fibonacci sequence (Fn)n≥0. In [6], Bravo and Luca,
and independently in [12], Marques, have found all positive integers which occur in two different
generalized Fibonacci sequences, which had been a problem proposed by Noe and Von Post [14].
Additionally, in [4], the authors have determined all the solutions of Diophantine equation

P (k)
n = F (l)

m

in positive integers n, k,m, l ≥ 2.

In this paper, we solve the problem treated independently in [6], and [12] for the k-generalized
Pell sequences. Here is our theorem.

Theorem 1.1. Let n,m, k, l be positive integers such that 2 ≤ l < k and

P (k)
n = P (l)

m . (1)

Then n = m ≤ l + 1.

Kılıç [11] proved that
P (k)
n = F2n−1 (2)

for all 1 ≤ n ≤ k + 1. In Equation (1), if one of n ≤ k + 1 or m ≤ l + 1 holds, then
P

(k)
n = P

(l)
m is a Fibonacci number. In this case, by the Theorem 1 given in [4], we can see that

n = m ≤ min {k + 1, l + 1} . Thus, in order to prove our theorem, it suffices to show that there
are no solutions with n ≥ k + 2 and m ≥ l + 2.

2 Preliminaries

The characteristic polynomial of the sequence (P
(k)
n )n≥2−k is

Ψk(x) = xk − 2xk−1 − xk−2 − · · · − x− 1. (3)

From Lemma 1 of [17] we know that this polynomial has exactly one positive real root located
between 2 and 3. We denote the roots of the polynomial in (3) by α1, α2, . . . , αk. Particularly, let
α := α(k) = α1 denote the positive real root of Ψk(x). This is called the dominant root of Ψk(x).
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The other roots are strictly inside the unit circle. The Binet’s formula for the k-generalized Pell
numbers appears in [5] and is given by

P (k)
n =

k∑
j=1

αj − 1

α2
j − 1 + k(α2

j − 3αj + 1)
αn
j . (4)

It was also shown in [5] that the contribution of the roots inside the unit circle to the right-hand
side of formula (4) is very small, more precisely the inequality∣∣P (k)

n − gk(α)α
n
∣∣ < 1

2
(5)

holds for all n ≥ 2− k, where

gk(z) :=
z − 1

(k + 1)z2 − 3kz + k − 1
. (6)

From [3], we can derive the inequality,

|gk(αj)| <
2

k − 2
(7)

valid for all k ≥ 3 and 2 ≤ j ≤ k, and

|gk(αj)| < 1 (8)

valid for 1 ≤ j ≤ k. The following relation between α and P
(k)
n given in [5]

αn−2 ≤ P (k)
n ≤ αn−1 (9)

holds for all n ≥ 1.
The following result from the proof of the Lemma 9 given in [15]. In what follows,

φ := (1 +
√
5)/2 is the Golden section.

Lemma 2.1. Let n < φk/2−2 and let α be the dominant root of the polynomial Ψk(x). Then

gk(α)α
n =

φ2n

φ+ 2
+

δ

φ+ 2
+ ηφ2n + ηδ, (10)

where δ and η are real numbers such that

|δ| < φ2n

φk/2
and |η| < 4k

φk
. (11)

Furthermore, ∣∣αn − φ2n
∣∣ < φ2n

φk/2
. (12)

Lemma 2.2 ([5], Lemma 3.2). Let k, l ≥ 2 be integers. Then

(a) If k > l, then α(k) > α(l), where α(k) and α(l) are the values of α relative to k and l,

respectively.

(b) φ2(1− φ−k) < α < φ2.

(c) gk(φ
2) = 1

φ+2
.

(d) 0.276 < gk(α) < 0.5.

To solve our equation, we use linear forms in logarithms and Baker’s theory. For this, we will
give some notations, lemmas and a theorem.

258



Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(
x− η(i)

)
∈ Z[x],

where the ai’s are integers with gcd(a0, . . . , an) = 1 and a0 > 0 and η(i)’s are the conjugates
of η. Then

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(
max

{
|η(i)|, 1

}))
(13)

is called the logarithmic height of η. In particular, if η = a/b is a rational number with
gcd(a, b) = 1 and b ≥ 1, then h(η) = log (max {|a|, b}) .

We give some properties of the logarithmic height whose proofs can be found in [7]:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (14)

h(ηm) = |m|h(η).

Now, from Lemma 6 given in [4], we can deduce the estimate

h(gk(α)) < 5 log k for k ≥ 2, (15)

which will be used in the proof of Theorem 1.1.
We next give a theorem deduced from Corollary 2.3 of Matveev [13], which provides a large

upper bound for the subscript n in Equation (1) (also see Theorem 9.4 in [8]).

Theorem 2.1. Assume that γ1, γ2, . . . , γt are positive real algebraic numbers in a real algebraic
number field K of degree D, b1, b2, . . . , bt are rational integers, and

Λ := γb1
1 · · · γbt

t − 1

is not zero. Then

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1A2 · · ·At

)
,

where B ≥ max {|b1|, . . . , |bt|} and Ai ≥ max {Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

In [9], Dujella and Pethő proposed a reduction method based on an argument of Baker and
Davenport [1]. Later the authors of [2], proved the following lemma, which is an immediate
variation of the result due to Dujella and Pethő from [9]. This lemma is based on the theory of
continued fractions and will be used to lower the upper bound obtained by Theorem 2.1 for the
subscript n in Equation (1).
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Lemma 2.3. Let M be a positive integer, let p/q be a convergent of the continued fraction
expansion of the irrational number γ such that q > 6M, and let A,B, µ be some real numbers
with A > 0 and B > 1. Let ϵ := ||µq|| −M ||γq||, where || · || denotes the distance from x to the
nearest integer. If ϵ > 0, then there exists no solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ϵ)

logB
.

The following lemma can be found in [16].

Lemma 2.4. Let a, x ∈ R. If 0 < a < 1 and |x| < a, then

|log(1 + x)| < − log(1− a)

a
· |x|

and
|x| < a

1− e−a
· |ex − 1| .

Finally, we give the following lemma, which can be found in [10].

Lemma 2.5. If m ≥ 1, T ≥ (4m2)m and x

(log x)m
< T, then x < 2m · T · (log T )m.

2.1 The proof of Theorem 1.1

Assume P (k)
n = P

(l)
m holds with positive integers m,n, k, l such that 2 ≤ l < k. If 1 ≤ n ≤ k+1,

then we have P
(l)
m = P

(k)
n = F2n−1 by (2). The equation P

(l)
m = F2n−1 has only the solution

(m, l, n) = (m, l,m) for 1 ≤ m ≤ l + 1 by Theorem 1 given in [4]. Then we suppose that
n ≥ k + 2, which implies that n ≥ 5. If 1 ≤ m ≤ l + 1, then we have P

(k)
n = P

(l)
m = F2m−1

by (2). The equation P
(k)
n = F2m−1 has no solutions by Theorem 1 given in [4] since n ≥ k + 2.

Then we suppose that m ≥ l + 2, which implies that m ≥ 4. Let α = α(k) and β = α(l),

respectively, be positive real roots of Ψk(x) and Ψl(x) given in (3). Then 2 < α < φ2 < 3 and
2 < β < φ2 < 3 by Lemma 2.2 (b). Using (9), we get

αn−2 ≤ P (k)
n = P (l)

m ≤ βm−1,

and
βm−2 ≤ P (l)

m = P (k)
n ≤ αn−1.

Performing some calculations, we obtain

n ≤ 2 + (m− 1)
log β

logα
≤ 1.8m, (16)

and, similarly,
m ≤ 1.8n. (17)
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We now rearrange Equation (1) using inequality (5). Thus, we have

|gk(α)αn − gl(β)β
m| =

∣∣gk(α)αn − P (k)
n + P (l)

m − gl(β)β
m
∣∣ (18)

≤
∣∣P (k)

n − gk(α)α
n
∣∣+ ∣∣P (l)

m − gl(β)β
m
∣∣

<
1

2
+

1

2
= 1.

If we divide both sides of inequality (18) by gl(β)β
m, from Lemma 2.2, we get∣∣gk(α)(gl(β))−1αnβ−m − 1

∣∣ < 1

gl(β)βm
<

1

0.276 · βm
<

3.63

βm
. (19)

In order to use Theorem 2.1, we take t := 3 and

(γ1, b1) := (α, n) , (γ2, b2) := (β,−m) , (γ3, b3) :=
(
gk(α)(gl(β))

−1, 1
)
.

The number field containing γ1, γ2, and γ3 is K = Q(α, β), which has degree D = [K : Q] ≤
k · l ≤ k2. We show that

Λ1 := gk(α)(gl(β))
−1αnβ−m − 1

is nonzero. Assume that Λ1 = 0. Then

αngk(α) = gl(β)β
m,

that is, ∣∣∣∣ α− 1

(k + 1)α2 − 3kα + k − 1
αn

∣∣∣∣ = ∣∣∣∣ β − 1

(l + 1)β2 − 3lβ + l − 1
βn

∣∣∣∣ . (20)

Conjugating the above equality by some automorphism belonging to the Galois group of the
splitting field of Ψk(x) and Ψl(x) over Q and taking absolute values, we get∣∣∣∣ αi − 1

(k + 1)α2
i − 3kαi + k − 1

αn
i

∣∣∣∣ = ∣∣∣∣ βj − 1

(l + 1)β2
j − 3lβj + l − 1

βn
j

∣∣∣∣ (21)

for 1 ≤ i ≤ k and 1 ≤ j ≤ l. Let L = Q (α1, α2, . . . , αk, β1, β2, . . . , βl) be the normal closure of
K and let σ1, σ2, . . . , σk be elements of Gal(L/Q) such that σi(α) = αi. Then σ1, σ2, . . . , σk map
the elements from the list in the left of (21) to the same list, as well as to the elements from the
list in the right of (21). Since k > l, there exist i ̸= j in {1, 2, . . . , k} such that σi(β) = σj(β).

Now appliying σ−1
j σi to the Equation (20), we get that if we put σ−1

j (αi) = αs, then s ̸= 1. If it
were not, then αi = σj(α1) = αj, which is not possible for i ̸= j. Thus, s ̸= 1. Furthermore,
since σ−1

j (σi(β)) = β, it follows that∣∣∣∣ αs − 1

(k + 1)α2
s − 3kαs + k − 1

αn
s

∣∣∣∣ = ∣∣∣∣ β − 1

(l + 1)β2 − 3lβ + l − 1
βm

∣∣∣∣ . (22)

Besides, according to (5), we can see that

gl(β)β
m > P (l)

m − 1

2
≥ βm−2 − 1

2
≥ 2m−2 − 1

2
> 22 − 1

2
>

7

2
,

that is, the right side of (22) is greater than 7/2. But, the left side of (22) is less than 1 since
|αs| < 1 for s ̸= 1 and |gk(αs)| < 1 by (8). This is impossible. Therefore, Λ1 ̸= 0.
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Moreover, since

h(α) =
logα

k
<

log 3

k
, and h(β) =

log β

l
<

log 3

l

by (13) and

h(gk(α)(gl(β))
−1) ≤ h(gk(α)) + h((gl(β)) < 5 log k + 5 log l < 10 log k

by (15), we can take A1 := k log 3, A2 := k log 3, and A3 := 10k2 log k. Also, since n ≤ 1.8m,

it follows that B := 1.8m. Thus, taking into account inequality (19) and using Theorem 2.1, we
obtain

3.63

βm
> |Λ1|

> exp
(
−C ·D2(1 + logD)(1 + log 1.8m) (k log 3) (k log 3)

(
10k2 log k

))
and so

m log β − log(3.63) < C · k4 · 3 log k · 3 logm · (k log 3) (k log 3)
(
10k2 log k

)
,

where C := 1.4 · 306 · 34.5 and we have used the fact that D2 ≤ k2l2 < k4, 1 + logD <

1 + log k2 < 3 log k for k ≥ 3 and 1 + log 1.8m < 3 logm for m ≥ 4. From the last inequality, a
quick computation with Mathematica yields

m log β < 1.56 · 1013 · k8 · (log k)2 · logm,

or
m

logm
< 2.251 · 1013 · k8 · (log k)2. (23)

By Lemma 2.5, inequality (23) yields that

m < 2 · T · log (T ) ,

where T := 2.251 · 1013 · k8 · (log k)2. Performing the necessary calculations, we get

m < 2.39 · 1015 · k8 · (log k)3 (24)

valid for k ≥ 3.

Let k ∈ [3, 2600]. Then, we obtain n < 1.8m < 4.37 · 1045 from (24). We now reduce this
upper bound on n by applying Lemma 2.3. Let

z1 := n logα−m log β + log
[
gk(α)(gl(β))

−1
]

and x := ez1 − 1. Then, from (19), it is seen that

|x| = |ez1 − 1| < 3.63

βm
< 0.25

for m ≥ 4. Choosing a := 0.25, we get the inequality

|z1| = |log(x+ 1)| < log(100/75)

(0.25)
· 3.63
βm

<
4.18

βm
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by Lemma 2.4. Thus, it follows that

0 <
∣∣n logα−m log β + log

[
gk(α)(gl(β))

−1
]∣∣ < 4.18

βm
.

Dividing this inequality by log β, we get

0 < |nγ −m+ µ| < A ·B−w, (25)

where

γ :=
logα

log β
, µ :=

log [gk(α)(gl(β))
−1]

log β
, A := 6.04, B := β, and w := m.

It can be easily seen that logα

log β
is irrational. If it were not, then we could write logα

log β
=

a

b
for some

positive integers a and b. This implies that αb = βa, which is wrong since αb has k conjugates
and βa has l < k conjugates. Now, put

M := 4.37 · 1045,

which is an upper bound on n since n < 1.8m < 4.37 · 1045. We find that q109, the denominator
of the 109-th convergent of γ exceeds 6M. We also obtained ϵ > 8.02 · 10−6. Furthermore, a
computation with Mathematica gives us the inequality

m <
log (Aq109/ϵ)

logB
< 3014.

This gives that n < 1.8m = 5426 for all k ∈ [3, 2600]. A computation with Mathematica gives
us that the equation P

(k)
n = P

(l)
m has no solution in the range n ≥ k + 2 and m ≥ l + 2. This

completes the analysis in the case k ∈ [3, 2600] .

From now on, we can assume that k > 2600. Then we can see from (24) that the inequality

n < 1.8m < 4.302 · 1015 · k8 · (log k)3 < φk/2−2 < φk/2 (26)

holds for k > 2600. Thus, by Lemma 2.1, we have

gk(α)α
n =

φ2n

φ+ 2
+

δ

φ+ 2
+ ηφ2n + ηδ, (27)

where δ and η are real numbers such that

|δ| < φ2n

φk/2
and |η| < 4k

φk
. (28)

The case m < φl/2−2.

In this case, we have

gl(β)β
m =

φ2m

φ+ 2
+

δ1
φ+ 2

+ η1φ
2m + η1δ1, (29)

where δ and η are real numbers such that

|δ1| <
φ2m

φl/2
and |η1| <

4l

φl
(30)

by Lemma 2.1.
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So, from (27) and (29), we obtain∣∣∣∣gk(α)αn − φ2n

φ+ 2

∣∣∣∣ ≤ |δ|
φ+ 2

+ |η|φ2n + |η| |δ| (31)

≤ φ2n

φk/2

(
1

φ+ 2
+

4k

φk/2
+

4k

φk

)
<

φ2n

φk/2
,

and ∣∣∣∣gl(β)βm − φ2m

φ+ 2

∣∣∣∣ ≤ |δ1|
φ+ 2

+ |η1|φ2m + |η1| |δ1| (32)

≤ φ2m

φl/2

(
1

φ+ 2
+

4l

φl/2
+

4l

φl

)
<

9 · φ2m

φl/2
,

where we have used the fact that
1

φ+ 2
+

4k

φk/2
+

4k

φk
< 1 for k > 2600

and
1

φ+ 2
+

4l

φl/2
+

4l

φl
< 9 for l ≥ 2.

Using the inequalities (18), (31), and (32), we can see that∣∣∣∣ φ2n

φ+ 2
− φ2m

φ+ 2

∣∣∣∣ =

∣∣∣∣−gk(α)α
n + gk(α)α

n +
φ2n

φ+ 2
− gl(β)β

m + gl(β)β
m − φ2m

φ+ 2

∣∣∣∣
≤

∣∣∣∣gk(α)αn − φ2n

φ+ 2

∣∣∣∣+ ∣∣∣∣gl(β)βm − φ2m

φ+ 2

∣∣∣∣+ |gk(α)αn − gl(β)β
m|

<
φ2n

φk/2
+

9 · φ2m

φl/2
+ 1

< φ2m

(
1

φ2m−2n+k/2
+

9

φl/2
+

1

φ2m

)
. (33)

Since m ≥ l + 2, it follows that 2m ≥ 2l + 4 > l/2. Also, k > l and P
(k)
n = P

(l)
m implies that

n < m. Therefore, φ2m−2n+k/2 > φ2+k/2 > φ2+l/2. Thus, from (33), we get∣∣∣∣ φ2n

φ+ 2
− φ2m

φ+ 2

∣∣∣∣ < φ2m

(
1

φ2+l/2
+

9

φl/2
+

1

φl/2

)
(34)

≤ φ2m

(
φ−2 + 9 + 1

φl/2

)
<

10.4 · φ2m

φl/2
.

Dividing both sides of the above inequality by
φ2m

φ+ 2
, we get

∣∣1− φ2n−2m
∣∣ < 10.4 · (φ+ 2)

φl/2
<

37.63

φl/2
. (35)
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On the other hand, since

1− φ2n−2m = 1− 1

φ2m−2n
> 1− 1

φ2
> 0.618 >

1

2
,

the inequality (35) gives
1

2
<

37.63

φl/2
, and so l < 18.

Thus, we obtain m < φl/2−2 < φ7 < 29.1, which contradicts the fact that 2600 < k ≤ n−2 < m.

The case m > φl/2−2.

In this case, we have
φl/2 < 6.26 · 1015 · k8 · (log k)3

from (24). Since the inequality 6.26 · 1015 · k8 · (log k)3 < k14 holds for k > 2600, it follows that
φl/2 < k14, which implies that

l < 41 log k. (36)

On the other hand, using (18) and (31), we can see that∣∣∣∣gl(β)βm − φ2n

φ+ 2

∣∣∣∣ =

∣∣∣∣gl(β)βm − φ2n

φ+ 2
+ gk(α)α

n − gk(α)α
n

∣∣∣∣
≤

∣∣∣∣gk(α)αn − φ2n

φ+ 2

∣∣∣∣+ |gl(β)βm − gk(α)α
n|

<
φ2n

φk/2
+ 1.

Dividing both sides of the last inequality by φ2n

φ+ 2
, we get

∣∣∣√5gl(β)β
mφ−2n+1 − 1

∣∣∣ <
φ+ 2

φk/2
+

φ+ 2

φ2n
(37)

<
2φ+ 4

φk/2
<

7.24

φk/2
,

where we have used the fact that n ≥ k + 2 and so 2n > k/2. Now, we show that the number
Λ2 :=

√
5gl(β)β

mφ−2n+1 − 1 is nonzero. Assume that Λ2 = 0. Then, we get 5g2l (β) =

φ4n−2β−2m ∈ OK, where OK the ring of integers of the field K = Q(
√
5, β). It is clear that

5g2l (β) < 5/4 by Lemma 2.2 (d). Also, by (7), we have

|gl(βi)| <
2

l − 2

for 2 ≤ i ≤ l and l ≥ 4. It follows that 5 |g2l (βi)| <
20

(l − 2)2
. Let l ≥ 7. Then, we can see that

∣∣NQ(β)/Q
(
5g2l (β)

)∣∣ = l∏
i=1

5
∣∣g2l (βi)

∣∣ < 5

4
·
(

20

(l − 2)2

)l−1

<
5

4
·
(
4

5

)6

< 1.
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So, 5g2l (β) is not an algebraic integer. This contradicts 5g2l (β) ∈ OK. Also, it can be checked
with Mathematica that 5g2l (β) is not an algebraic integer for l ∈ {2, 3, 4, 5, 6} . Therefore, Λ2 ̸= 0.

Now, we can apply Theorem 2.1. In order to use Theorem 2.1, we take t := 3, and

(γ1, b1) := (β,m) , (γ2, b2) := (φ,−2n+ 1) , (γ3, b3) :=
(√

5gl(β), 1
)
.

The number field containing γ1, γ2, γ3 is K, which has degree D = [K : Q] ≤ 2l. Moreover,
since

h(γ1) = h(β) =
log β

l
<

log 3

l
, h(γ2) = h(φ) =

logφ

2
,

and
h(γ3) ≤ h(

√
5) + h(gl(β)) ≤ log

√
5 + 5 log l < 6.5 · log l

by (14) and (15), we can take A1 := log 9, A2 := l logφ, and A3 := 13l log l. Also, since
m < 1.8n, we can take B := 2n − 1. Thus, taking into account inequality (37) and using
Theorem 2.1, we obtain

7.24 · φ−k/2 > |Λ1|
> exp

(
−C · (2l)2(1 + log(2n− 1))(1 + log 2l) (log 9) (l logφ) (13l log l)

)
,

where C := 1.4 · 306 · 34.5. This implies that

k < 2.62 · 1014 · l4 · (log l)2 · log n, (38)

where we have used the fact that (1 + log(2n − 1)) < 2 log n for n ≥ k + 2 > 2602 and
1 + log 2l < 4 log l for l ≥ 2.

Now, let
z2 := m log β − (2n− 1) logφ+ log(

√
5gl(β))

and x := 1− ez2 . Then
|x| = |1− ez2| < 7.24

φk/2
< 0.01,

by (37) since k > 2600. Choosing a := 0.01, we obtain the inequality

|z2| = |log(x+ 1)| < log(100/99)

0.01
· 7.24
φk/2

<
7.28

φk/2
,

by Lemma 2.4. That is,

0 <
∣∣∣m log β − (2n− 1) logφ+ log

(√
5gl(β)

)∣∣∣ < 7.28

φk/2
.

Dividing both sides of the above inequality by logφ, it is seen that

0 < |mγ − (2n− 1) + µ| < A ·B−w, (39)

where

γ :=
log β

logφ
, µ :=

log
(√

5gl(β)
)

logφ
, A := 15.13, B := φ, and w := k/2.

It is clear that log β

logφ
is irrational. If it were not, then log β

logφ
=

a

b
for some positive integers a and b.
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Thus, we get that βb = φa, which is false. That is, for l ≥ 3, βb has more conjugates than φa,
whereas for l = 2, we have that β = 1+

√
2 is a quadratic unit living in a different quadratic field

than φ. Therefore, log β

logφ
is irrational. Besides, since l < 63 log k by (36) and n < m, it follows

from (36) and (38) that

k < 2.62 · 1014 · (41 log k)4 · (log (41 log k))2 · log
(
4.302 · 1015 · k8 · (log k)3

)
,

which implies that
k < 1.06 · 1033.

Substituting this bound of k into (24) and (36), we get

m < 1.68 · 10285

and
l ≤ 3118.

If we take M := 1.68 · 10285, which is an upper bound on m, we find that q584, the denominator
of the 584-th convergent of γ exceeds 6M. Furthermore, a quick computation with Mathematica
gives us that the value

log (Aq584/ϵ)

logB

is less than 11320. So, if (39) has a solution, then

k

2
<

log (Aq585/ϵ)

logB
< 7736.85,

that is, k ≤ 15473. Hence, from (24), we get m < 2.39 · 1015 · k8 · (log k)3, which implies that
m < 7.05 · 1051. Also, l < 41 log k < 396 by (36). If we apply again Lemma 2.3 to inequality
(39) with M := 7.05 · 1051, we find that q114, the denominator of the 114-th convergent of γ
exceeds 6M. After doing this, then a quick computation with Mathematica shows that inequality
(39) has solutions only for k ≤ 2180. This contradicts the fact that k > 2600. Thus, the proof is
complete.

Acknowledgements

Computations were performed using High Performance Computing infrastructure provided by
the Mathematical Sciences Support Unit at the University of the Witwatersrand.

References

[1] Baker, A., & Davenport, H. (1969). The equations 3x2 − 2 = y2 and 8x2 − 7 = z2. The
Quarterly Journal of Mathematics, Ser. (2), 20(1), 129–137.
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