Yasemin Alp and E. Gökçen Koçer
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 236–250
DOI: 10.7546/nntdm.2025.31.2.236-250
Full paper (PDF, 234 Kb)
Details
Authors and affiliations
Yasemin Alp
Department of Education of Mathematics and Science, Faculty of Education, Selcuk University
Konya, Türkiye
E. Gökçen Koçer
Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University
Konya, Türkiye
Abstract
In this paper, bivariate Leonardo polynomials are defined, which are closely related to bivariate Fibonacci polynomials. Bivariate Leonardo polynomials are generalizations of the Leonardo polynomials and Leonardo numbers. Some properties and identities (Cassini, Catalan, Honsberger, d’Ocagne) for the bivariate Leonardo polynomials are obtained. Then, the Riordan arrays are defined by using bivariate Leonardo polynomials.
Keywords
- Binet’s formula
- Fibonacci polynomials
- Leonardo numbers
- Riordan arrays
2020 Mathematics Subject Classification
- 11B37
- 11B39
- 11B83
- 05A15
- 15A09
References
- Alp, Y., & Koçer, E. G. (2021). Some properties of Leonardo numbers. Konuralp Journal of Mathematics, 9(1), 183–189.
- Barry, P. (2019). On the halves of a Riordan array and their antecedents. Linear Algebra and its Applications, 582, 114–137.
- Belbachir, H., & Bencherif, F. (2008). On some properties of bivariate Fibonacci and Lucas polynomials. Journal of Integer Sequences, 11(2), Article 08.2.6.
- Catalani, M. (2002). Generalized bivariate Fibonacci polynomials. Preprint. arXiv: math/0211366.
- Catalani, M. (2004). Some formulae for bivariate Fibonacci and Lucas polynomials. Preprint. arXiv: math/0406323.
- Catarino, P. M. M. C., & Borges, A. (2020). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75–86.
- Djordjević, G. B. (1997). Some properties of a class of polynomials. Matematički Vesnik, 49(3–4), 265–271.
- Djordjević, G. B. (2001). Some properties of partial derivatives of generalized Fibonacci and Lucas polynomials. The Fibonacci Quarterly, 39(2), 138–141.
- Frei, G. (1980). Binary Lucas and Fibonacci polynomials, I. Mathematische Nachrichten, 96, 83–112.
- Hoggatt, V. E. Jr., & Long, C. T. (1974). Divisibility properties of generalized Fibonacci polynomials. The Fibonacci Quarterly, 12(2), 113–120.
- Koshy, T. (2018). Fibonacci and Lucas Numbers with Applications. Wiley Interscience, Hoboken, NJ.
- Kürüz, F., Dağdeviren, A., & Catarino, P. (2021). On Leonardo Pisano hybrinomials. Mathematics, 9(22), Article 2923.
- Lupaș, A. (1999). A guide of Fibonacci and Lucas polynomials. Octogon Mathematics Magazine, 7(1), 2–12.
- Marshall, C., & Nkwanta, A. (2021). Fibonacci and Lucas Riordan arrays and construction of pseudo-involutions. Applicable Analysis, 104(1), 82–93.
- Merlini, D., Rogers, D. G., Sprugnoli, R., & Verri, M. C. (1997). On some alternative characterizations of Riordan arrays. Canadian Journal of Mathematics, 49(2), 301–320.
- Merlini, D., Sprugnoli, R., & Verri, M. C. (2006). Lagrange inversion: When and how. Acta Applicandae Mathematicae, 94(3), 233–249.
- Rogers, D. G. (1978). Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22(3), 301–310.
- Shapiro, L. W., Getu, S., Woan, W.-J., & Woodson, L. C. (1991). The Riordan group. Discrete Applied Mathematics, 34(1–3), 229–239.
- Sprugnoli, R. (1994). Riordan arrays and combinatorial sums. Discrete Mathematics, 132(1–3), 267–290.
- Swamy, M. N. S. (1999). Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials. The Fibonacci Quarterly, 37(3), 213–222.
- Swamy, M. N. S. (1999). Network properties of a pair of generalized polynomials. The Fibonacci Quarterly, 37(4), 350–360.
- Tan, M., & Zhang, Y. (2005). A note on bivariate and trivariate Fibonacci polynomials. Southeast Asian Bulletin of Mathematics, 29(5), 975–990.
- Yu, H., & Liang, C. (1997). Identities involving partial derivatives of bivariate Fibonacci and Lucas polynomials. The Fibonacci Quarterly, 35(1), 19–23.
Manuscript history
- Received: 2 October 2024
- Revised: 6 May 2025
- Accepted: 7 May 2025
- Online First: 7 May 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Alp, Y., & Koçer, E. G. (2025). Bivariate Leonardo polynomials and Riordan arrays. Notes on Number Theory and Discrete Mathematics, 31(2), 236-250, DOI: 10.7546/nntdm.2025.31.2.236-250