Carlos M. da Fonseca and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 73–78
DOI: 10.7546/nntdm.2025.31.1.73-78
Full paper (PDF, 160 Kb)
Details
Authors and affiliations
Carlos M. da Fonseca
1 Kuwait College of Science and Technology
Doha District, Safat 13133, Kuwait
2 Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Spain
Anthony G. Shannon
3 Honorary Fellow, Warrane College, University of New South Wales
Kensington NSW 2033, Australia
Abstract
Recently, quite a few generalizations of Leonardo numbers have emerged in the literature. In this short note, we propose a new bivariate extension and provide its generating function. We correct the generating function of another recently proposed bivariate generalization.
Keywords
- Leonardo sequence
- Generating function
- Recurrence relations
- Hessenberg matrices
- Determinant
2020 Mathematics Subject Classification
- 15A15
- 11B39
References
- Atkins, J., & Geist, R. (1987). Fibonacci numbers and computer algorithms. College Mathematics Journal, 18(4), 328–336.
- Bednarz, U., & Wołowiec-Musiał, M. (2024). Generalized Fibonacci-Leonardo numbers. Journal of Difference Equations and Applications, 30(1), 111–121.
- da Fonseca, C. M. (2024). The generating function of a bi-periodic Leonardo sequence. Armenian Journal of Mathematics, 16(7), 1–8.
- da Fonseca, C. M. (2011). An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Mathematical Journal, 61(4), 917–921.
- Dijkstra, E. W. (1982). Smoothsort, an alternative for sorting in situ. Science of Computer Programming, 1(3), 223–233.
- Getu, S. (1991). Evaluating determinants via generating functions. Mathematics Magazine, 64(1), 45–53.
- Horadam, A. F. (1965). Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, 3(3), 161–176.
- Horadam, A. F. (1965). Generating functions for powers of a certain generalized sequence of numbers. Duke Mathematical Journal, 32(3), 437–446.
- Horadam, A. F. (1967). Special properties of the sequence wn(a, b; p, q). The Fibonacci Quarterly, 5(5), 424–434.
- Inselberg, A. (1978). On determinants of Toeplitz–Hessenberg matrices arising in power series. Journal of Mathematical Analysis and Applications, 63(2), 347–353.
- Janjić, M. (2012). Determinants and recurrence sequences. Journal of Integer Sequences, 15, Article 12.3.5.
- Leerawat, U., & Daowsud, K. (2023). Determinants of some Hessenberg matrices with generating functions. Special Matrices, 11, 1–8.
- Mangueira, M. C. S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Leonardo’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 28(1), 115–123.
- Merca, M. (2013). A note on the determinant of a Toeplitz–Hessenberg matrix. Special Matrices, 1, 10–16.
- Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
- Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109–114.
- Shannon, A. G., & Horadam, A. F. (1971). Generating functions for powers of third order recurrence sequences. Duke Mathematical Journal, 38(4), 791–794.
- Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778–790.
- Vein, R., & Dale, P. (1999). Determinants and Their Applications in Mathematical Physics. Applied Mathematical Sciences, Vol. 134, Springer, New York.
- Verde-Star, L. (2017). Polynomial sequences generated by infinite Hessenberg matrices. Special Matrices, 5, 64–72.
Manuscript history
- Received: 19 June 2024
- Revised: 4 April 2025
- Accepted: 6 April 2025
- Online First: 7 April 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Mangueira, M. C. S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2022). Leonardo’s bivariate and complex polynomials. Notes on Number Theory and Discrete Mathematics, 28(1), 115–123.
- Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
- Shannon, A. G., & Deveci, Ö. (2022). A note on generalized and extended Leonardo sequences. Notes on Number Theory and Discrete Mathematics, 28(1), 109–114.
- Shattuck, M. (2022). Combinatorial proofs of identities for the generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 28(4), 778–790.
Cite this paper
da Fonseca, C. M., & Shannon, A. G. (2025). A note on a bivariate Leonardo sequence. Notes on Number Theory and Discrete Mathematics, 31(1), 73-78, DOI: 10.7546/nntdm.2025.31.1.73-78.