A note on the approximation of divisor functions

József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 69–72
DOI: 10.7546/nntdm.2025.31.1.69-72
Full paper (PDF, 198 Kb)

Details

Authors and affiliations

József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania

Abstract

We offer an arithmetic proof of a result from the recent paper [1]. A more general result is provided, too.

Keywords

  • Arithmetic functions
  • Legendre’s theorem
  • Inequalities for real functions

2020 Mathematics Subject Classification

  • 11A25
  • 11N37
  • 26A06
  • 26D15

References

  1. De Carli, L., Echezabal, A., & Laporta, M. (2024). Approximating the divisor functions. The Journal of Analysis, 32, 2503–2512.
  2. Grönwall, T. H. (1913). Some asymptotic expressions in the theory of numbers.
    Transactions of the American Mathematical Society, 14, 113–122.
  3. Hardy, G. H., & Wright, E. M. (1979). An Introduction to the Theory of Numbers (5th ed.). Oxford University Press, Oxford.

Manuscript history

  • Received: 10 December 2024
  • Accepted: 3 April 2025
  • Online First: 5 April 2025

Copyright information

Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Sándor, J. (2025). A note on the approximation of divisor functions. Notes on Number Theory and Discrete Mathematics, 31(1), 69-72, DOI: 10.7546/nntdm.2025.31.1.69-72.

Comments are closed.