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Abstract: We offer an arithmetic proof of a result from the recent paper [1]. A more general
result is provided, too.
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1 Introduction

For a positive integer m > 1, and a real number «, the divisor functions of m are defined by
a(m) = Z -,
dlm
where d runs through all positive divisors of m. In a recent paper [1], by using interesting, but
complicated analytical arguments, the authors prove the following theorem:
Theorem 1. One has the following limit:

lim Ta(m!) = ((a), (1)

m—o00 (m!)a

where

1

[M]¢

((s) =

i
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is the Riemann zeta function of real arguments. As clearly

aa<m>=§(ﬂ) — e %d—am ¢(o),

one has o,(m)/m® < ((«), and by (1) we obtain a new proof of a classical result by Gronwall

[2], that
oo (m)
ma

= ((a). 2)

In what follows, we will obtain a simple proof of (1), based on Legendre’s classical formula

lim sup
m—0o0

for the prime factorizations of m!, combined with some elementary inequalities of real analysis.

2 Auxiliary results

Lemma 1 (Legendre). Let ,(m) be the exponent of the prime p in the prime factorization of m!.

1)

where [x| denotes the integer part of x.
For a proof of this classical result, see e.g. [3].

Lemma 2 (Euler). One has the identity

)= I == 3)

This is another classical result, see [3].

1
Lemma 3. For any real number 0 < x < 7 one has

4
log(1 —z) > —3% 4)
Proof. Let f(z) = log(1l — z)+ %x, z € [0, ] Then f'(x) = h> 0, so the function f is
strictly increasing, implying that f(x) > f(0) = 0, so relation (4) follows. O

Lemma 4. Let p denote a prime number, and let a > 1. Then
1 1
> <y 3)
a<p§n1p

Proof. One has

Z_<Z /*O"dt

a<p§nz p>a

so inequality (5) follows. [
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Lemma 5.
lim ¢(s) = 1. (6)

S5§—00

Proof. Clearly
1 <1 1 1
1< <14 — —dt=14+ —+ ———,
C(S)— +23+/2 ts +28+2S*1,<S_1)

so by letting s — o0, relation (6) follows. U

3 Proof of Theorem 1

For any prime power p", we have

(rtDa _ 1 -t
aa(pr)=1+pr+---+pm:ppa—_1— —

so by the multiplicativity of the function o, one has

1

1—-——1
ma (yp(m)+1)

7a(mt) = [ {P”p( ) f)_—i]

e " (M

m)! 1
e T )

where we have used Lemma 1. Thus

oa(m!) _ H 1 - A(m),

mle 1—p@

p<m

1
Amm) = 1 (“W)

p<m

where

Thus by Lemma 2, in order to prove Theorem 1, one has to show that

lim A(m) = 1. (8)

m—0o0

As
1

Ay > TT (1 s ) = Al

p<m
and A;(m) < 1, it will be sufficient to consider A;(m).
Let now write A;(m) as A;(m) = B(m).C(m), where

1
B(m) =] (1 - pvp(m>+1> ©)

p<a

and

1
C’(m) H (1—W) (10)

a<p<m
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We will select a so that, when m — oo, then a — oo. Puta = % First, remark that in B(m),

since 7, (m) > [%} > k (by Lemma 1), one has y,(m) + 1>k + 1, so

B = 1] (1_p’“1+1)> 1 (1_19’“1“):C(k1+1)'

pgm/k p prime

Lete.g. kK = [/m] — oo, when m — oo. Then clearly, by 1 > B(m) > ﬁ, we get
lim B(m) = 1, by Lemma 5.
m—00
Now, for C'(m), remark that
C(m) > H (1 — i)
- p2 P
m/k<p<m
only by Lemma 3 (applied to x = 1% < i),
1 4 1 4 k
C’(m)Zexp{ Z log(l—ﬁ)} >exp{—§- Z ]?} >exp{—§-a},
m/k<p<m m/k<p<m

by Lemma 4. Thus exp {—%%} < C(m) < 1,and %—>O, as m— 00, so we get lim C'(m)=1.

m— 00

Thus, finally, relation (8) is proved.
The above proof shows that, the following generalization of Theorem 1 holds true.

Theorem 2. Y

m—00 (m!)ta

= ((ta), (1D
for any positive integert > 1.

The proof of this generalization is similar, and we omit the details.
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