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1 Introduction

For a positive integer m ≥ 1, and a real number α, the divisor functions of m are defined by

σα(m) =
∑
d|m

dα,

where d runs through all positive divisors of m. In a recent paper [1], by using interesting, but
complicated analytical arguments, the authors prove the following theorem:

Theorem 1. One has the following limit:

lim
m→∞

σα(m!)

(m!)α
= ζ(α), (1)

where

ζ(s) =
∞∑
k=1

1

ks
(s > 1)
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is the Riemann zeta function of real arguments. As clearly

σα(m) =
∑
d|m

(
m

d

)α

= mα ·
∑
d|m

1

dα
≤ mα · ζ(α),

one has σα(m)/mα ≤ ζ(α), and by (1) we obtain a new proof of a classical result by Grönwall
[2], that

lim
m→∞

sup
σα(m)

mα
= ζ(α). (2)

In what follows, we will obtain a simple proof of (1), based on Legendre’s classical formula
for the prime factorizations of m!, combined with some elementary inequalities of real analysis.

2 Auxiliary results

Lemma 1 (Legendre). Let γp(m) be the exponent of the prime p in the prime factorization of m!.

Then

γp(m) =
∞∑
j=1

[
m

pj

]
,

where [x] denotes the integer part of x.

For a proof of this classical result, see e.g. [3].

Lemma 2 (Euler). One has the identity

ζ(s) =
∏

p prime

1

1− p−s
(3)

This is another classical result, see [3].

Lemma 3. For any real number 0 < x ≤ 1

4
one has

log(1− x) > −4

3
x. (4)

Proof. Let f(x) = log(1 − x)+
4

3
x, x ∈

[
0,

1

4

]
. Then f ′(x) =

1− 4x

3(1− x)
≥ 0, so the function f is

strictly increasing, implying that f(x) > f(0) = 0, so relation (4) follows.

Lemma 4. Let p denote a prime number, and let a > 1. Then∑
a<p≤m

1

p2
<

1

a
. (5)

Proof. One has ∑
a<p≤m

1

p2
<

∑
p>a

1

p2
<

∫ +∞

a

dt

t2
=

1

a
,

so inequality (5) follows.

70



Lemma 5.
lim
s→∞

ζ(s) = 1. (6)

Proof. Clearly

1 < ζ(s) ≤ 1 +
1

2s
+

∫ ∞

2

1

ts
dt = 1 +

1

2s
+

1

2s−1 · (s− 1)
,

so by letting s → ∞, relation (6) follows.

3 Proof of Theorem 1

For any prime power pr, we have

σα(p
r) = 1 + pr + · · ·+ prα =

p(r+1)α − 1

pα − 1
= prα ·

1− 1
p(r+1)α

1− 1
pα

,

so by the multiplicativity of the function σα one has

σα(m!) =
∏
p≤m

[
pγp(m)α ·

1− 1
p(γp(m)+1)α

1− 1
pα

]
=

m!α∏
p≤m(1−

1
pα
)
·
∏
p≤m

(
1− 1

p(γp(m)+1)α

)
,

(7)

where we have used Lemma 1. Thus

σα(m!)

m!α
=

∏
p≤m

1

1− p−α
· A(m),

where

A(m) =
∏
p≤m

(
1− 1

p(γp(m)+1)α

)
.

Thus by Lemma 2, in order to prove Theorem 1, one has to show that

lim
m→∞

A(m) = 1. (8)

As

A(m) >
∏
p≤m

(
1− 1

pγp(m)+1

)
= A1(m),

and A1(m) < 1, it will be sufficient to consider A1(m).

Let now write A1(m) as A1(m) = B(m).C(m), where

B(m) =
∏
p≤a

(
1− 1

pγp(m)+1

)
(9)

and

C(m)
∏

a<p≤m

(
1− 1

pγp(m)+1

)
(10)

71



We will select a so that, when m → ∞, then a → ∞. Put a =
m

k
. First, remark that in B(m),

since γp(m) ≥
[m
p

]
≥ k (by Lemma 1), one has γp(m) + 1 ≥ k + 1, so

B(m) ≥
∏

p≤m/k

(
1− 1

pk+1

)
>

∏
p prime

(
1− 1

pk+1

)
=

1

ζ(k + 1)
.

Let e.g. k = [
√
m ] → ∞, when m → ∞. Then clearly, by 1 > B(m) >

1

ζ(k + 1)
, we get

lim
m→∞

B(m) = 1, by Lemma 5.

Now, for C(m), remark that

C(m) ≥
∏

m/k<p≤m

(
1− 1

p2

)
,

only by Lemma 3 (applied to x =
1

p2
≤ 1

4
),

C(m) ≥ exp

{ ∑
m/k<p≤m

log

(
1− 1

p2

)}
> exp

{
− 4

3
·

∑
m/k<p≤m

1

p2

}
> exp

{
− 4

3
· k

m

}
,

by Lemma 4. Thus exp
{
−4

3
· k
m

}
< C(m) < 1, and k

m
→0, as m→∞, so we get lim

m→∞
C(m)=1.

Thus, finally, relation (8) is proved.
The above proof shows that, the following generalization of Theorem 1 holds true.

Theorem 2.
lim

m→∞

σα((m!)t)

(m!)tα
= ζ(tα), (11)

for any positive integer t ≥ 1.

The proof of this generalization is similar, and we omit the details.
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