An analytical formula for Bell numbers

Vembu Ramachandran and Roopkumar Rajakumar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 4, Pages 797–802
DOI: 10.7546/nntdm.2024.30.4.797-802
Full paper (PDF, 201 Kb)

Details

Authors and affiliations

Vembu Ramachandran
Department of Mathematics, SBK College
Aruppukottai – 626101, India

Roopkumar Rajakumar
Department of Mathematics, Central University of Tamil Nadu
Thiruvarur – 610005, India

Abstract

We present an analytic formula for Bell numbers through counting the number of uniform structures on a finite set.

Keywords

  • Bell numbers
  • Counting the partitions
  • Uniform structure

2020 Mathematics Subject Classification

  • 11B73
  • 05A18
  • 54E15

References

  1. Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35(2), 258–277.
  2. Weil, A. (1937). Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Herman, Paris.
  3. Willard, S. (1970). General Topology. Addison-Wesley Publishing Company Inc., Philippines.

Manuscript history

  • Received: 21 September 2023
  • Revised: 22 November 2024
  • Accepted: 26 November 2024
  • Online First: 26 November 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Ramachandran, V., & Rajakumar, R. (2024). An analytical formula for Bell numbers. Notes on Number Theory and Discrete Mathematics, 30(4), 797-802, DOI: 10.7546/nntdm.2024.30.4.797-802.

Comments are closed.