Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 4, 797–802 DOI: 10.7546/nntdm.2024.30.4.797-802

An analytical formula for Bell numbers

Vembu Ramachandran¹ and Roopkumar Rajakumar²

¹ Department of Mathematics, SBK College Aruppukottai – 626101, India e-mail: msrvembu@yahoo.co.in

² Department of Mathematics, Central University of Tamil Nadu Thiruvarur – 610005, India e-mail: roopkumarr@rediffmail.com

Received: 21 September 2023 Accepted: 26 November 2024 **Revised:** 22 November 2024 **Online First:** 26 November 2024

Abstract: We present an analytic formula for Bell numbers through counting the number of uniform structures on a finite set.

Keywords: Bell numbers, Counting the partitions, Uniform structure. **2020 Mathematics Subject Classification:** 11B73, 05A18, 54E15.

1 Introduction

The Bell number ϵ_n is defined as the number of partitions of a set of *n* elements. Eric Temple Bell [1] presented an explicit formula for the Bell numbers as follows:

$$\epsilon_n = \sum_{s=1}^n \frac{1}{(s-1)!} \left[\sum_{r=0}^{s-1} (-1)^r \binom{s-1}{r} (s-r)^{n-1} \right], \ n \ge 1.$$
(1)

André Weil [2] introduced the uniform structure to study the uniform continuity in the context of topological spaces. We first recall the definition of the uniform structure on a set X.

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Definition 1.1 ([3]). Let X be a non-empty set. A collection \mathfrak{U} of subsets of $X \times X$ is said to be a uniform structure or diagonal uniformity on X if

- (U1) $\Delta \subseteq E$, for all $E \in \mathfrak{U}$, where $\Delta = \{(x, x) : x \in X\}$.
- (U2) $E \cap F \in \mathfrak{U}$ whenever $E, F \in \mathfrak{U}$.
- (U3) If $E \in \mathfrak{U}$ and $E \subseteq F \subseteq X \times X$, then $F \in \mathfrak{U}$.
- (U4) $E^{-1} \in \mathfrak{U}$ whenever $E \in \mathfrak{U}$, where $E^{-1} = \{(x, y) : (y, x) \in E\}$.
- (U5) For each $E \in \mathfrak{U}$, there exists $F \in \mathfrak{U}$ such that $F \circ F \subseteq E$, where $F \circ F = \{(x, y) : (x, z), (z, y) \in F, \text{ for some } z \in X\}.$

Throughout this paper, we fix X as a nonempty finite set. We first introduce some notations and phrases.

- For any set S, |S| denotes the cardinality of S.
- Let P_n be the class of all partitions of the positive integer n. Every element of P_n can be considered as a function P : {1, 2, ..., n} → {0, 1, 2, ..., n} which satisfies the condition ∑_{i=1}ⁿ P(i)i = n. If P is the function representing a partition of n, then P(i) counts the number of occurrences of i in the partition of n. In particular, if

$$n = \underbrace{n_1 + n_1 + \dots + n_1}_{q_1 \text{-times}} + \underbrace{n_2 + n_2 + \dots + n_2}_{q_2 \text{-times}} + \dots + \underbrace{n_t + n_t + \dots + n_t}_{q_t \text{-times}}$$

is a partition of n, then $P(n_k) = q_k$, for k = 1, 2, ..., t and P(i) = 0 for $i \neq n_k$ for any k.

- By a partition of X, we mean a collection Q = {S₁, S₂,..., S_ℓ} of nonempty subsets of X such that ⋃_{i=1}^ℓ S_i = X and S_i ∩ S_j = Ø for i ≠ j.
 For a given D ∈ D, let
- For a given $P \in \mathcal{P}_n$, let

$$\{n_1, n_2, \dots, n_t\} = \{i : P(i) \neq 0\} \text{ and } P(n_k) = q_k, \forall k = 1, 2, \dots, t.$$
 (2)

Let $\ell = \sum_{i=1}^{n} P(i)$ and \mathscr{E}_{P} denote the class of all partitions $\{S_{1}, S_{2}, \dots, S_{\ell}\}$ of the set X such that

$$|S_i| = \begin{cases} n_1, & \text{if } 1 \le i \le q_1 \\ n_2, & \text{if } q_1 + 1 \le i \le q_1 + q_2 \\ \vdots \\ n_t, & \text{if } \sum_{k=1}^{t-1} q_k + 1 \le i \le \sum_{k=1}^t q_k \\ \end{bmatrix}$$

Note that $\ell = \sum_{i=1}^{n} P(i) = \sum_{k=1}^{t} P(n_k) = \sum_{k=1}^{t} q_k.$

• For given positive integers n and r such that $r \leq n$, $\binom{n}{r}$ denotes the number of ways of choosing r objects from n objects.

In this paper, we count the number of uniform structures on a set of n elements and find the cardinality of each uniform structure on a finite set. Finally, we present yet another formula for the Bell number ϵ_n , which is written in terms of the partitions of n.

2 Characterization theorem

Theorem 2.1. Let X be a finite set and \mathfrak{U} be a collection of subsets of $X \times X$. Then \mathfrak{U} is a uniform structure on X if and only if

$$\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\} \text{ where } A = \bigcup_{i=1}^{k} (S_i \times S_i)$$

for some partition $\mathcal{Q} = \{S_1, S_2, \dots, S_k\}$ of X.

Proof. Assume that \mathfrak{U} is a uniform structure and let $A = \bigcap_{F \in \mathfrak{U}} F$. Since X is finite, using the axiom (U2), we get $A \in \mathfrak{U}$ and clearly $F \supseteq A$, for all $F \in \mathfrak{U}$. We observe that A is an equivalence relation on X. Indeed, the axioms (U1), (U4), and (U5) of the uniform structure imply

$$\Delta \subseteq A, \ A^{-1} = A, \text{ and } A \circ A \subseteq A,$$

respectively. The equivalence relation A gives a partition of X, say $\{S_1, S_2, \ldots, S_k\}$. We observe that $A = \bigcup_{i=1}^{k} (S_i \times S_i)$ because $(x, y) \in A$ if and only if $x, y \in S_{i_0}$ for some $i_0 \in \{1, 2, \ldots, k\}$ if and only if $(x, y) \in S_{i_0} \times S_{i_0}$ if and only if $(x, y) \in \bigcup_{i=1}^{k} (S_i \times S_i)$. Clearly, by the definition of A, we get $\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\}$.

Conversely, let $\{S_1, S_2, \ldots, S_k\}$ be a partition of $X, A = \bigcup_{i=1}^k (S_i \times S_i)$ and $\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\}$. We shall show that \mathfrak{U} is a uniform structure.

- (U1) Given $x \in X$, there exists $i_x \in \{1, 2, ..., k\}$ such that $x \in S_{i_x}$. Therefore, $(x, x) \in S_{i_x} \times S_{i_x} \subseteq A \subseteq E$, for all $x \in X$ and for all $E \in \mathfrak{U}$. Hence $\Delta \subseteq E$, for all $E \in \mathfrak{U}$.
- (U2) If $E, F \in \mathfrak{U}$, then $E \supseteq A$ and $F \supseteq A$ and hence $E \cap F \supseteq A$. Thus $E \cap F \in \mathfrak{U}$.
- (U3) If $E \in \mathfrak{U}$ and $F \supseteq E$, then $F \supseteq E \supseteq A$ and hence $F \in \mathfrak{U}$.
- (U4) Since $(S_i \times S_i)^{-1} = (S_i \times S_i)$, we have $A^{-1} = A$. Therefore, for a given $E \in \mathfrak{U}$, we have $A \subseteq E$ and hence $A = A^{-1} \subseteq E^{-1}$. Thus $E^{-1} \in \mathfrak{U}$.
- (U5) We first show that $A \circ A \subseteq A$. If $(x, z) \in A \circ A$, then there exists $y \in X$ such that $(x, y), (y, z) \in A$. Then, there exist $i, j \in \{1, 2, ..., k\}$ such that $(x, y) \in S_i \times S_i$ and $(y, z) \in S_j \times S_j$. Therefore, $y \in S_i \cap S_j$. Since $\{S_1, S_2, ..., S_k\}$ is a partition of X, we have i = j and hence $x, z \in S_i$, which implies that $(x, z) \in S_i \times S_i \subseteq A$. Thus, we get $A \circ A \subseteq A$. Therefore, for each $E \in \mathfrak{U}$, we see that $A \circ A \subseteq A \subseteq E$.

Thus \mathfrak{U} is a uniform structure.

Hereafter, for a given partition Q of X, \mathfrak{U}_Q denotes the unique uniform structure associated with Q as in the above theorem. That is, Q and \mathfrak{U}_Q satisfy the following condition:

$$\bigcup_{S \in \mathcal{Q}} (S \times S) = \bigcap_{F \in \mathfrak{U}_{\mathcal{Q}}} F.$$

We say that a uniform structure \mathfrak{U} on X is associated with $P \in \mathcal{P}_n$ if $\mathfrak{U} = \mathfrak{U}_{\mathcal{Q}}$, for some $\mathcal{Q} \in \mathscr{E}_P$.

Proof. Let X be a set with n elements. The map $\mathcal{Q} \mapsto \mathfrak{U}_{\mathcal{Q}}$ is a bijection between the class of all partitions on X and the class of all uniform structures on X. Hence the number of uniform structures on X is the number of partitions of X which is the Bell number ϵ_n .

Since $\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\} = \{A \cup B : B \subseteq (X \times X) \setminus A\}$, we obtain the following corollary.

Corollary 2.2. The cardinality of a uniform structure on a finite set X is $2^{|X|^2 - |A|}$, where $A \subseteq X \times X$ is such that $\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\}$.

Corollary 2.3. The cardinality of any uniform structure \mathfrak{U} is 4^j for some $j \in \mathbb{N}$.

Proof. Let \mathfrak{U} be a uniform structure on X. Then, $\mathfrak{U} = \mathfrak{U}_{\mathcal{Q}}$, for some partition \mathcal{Q} of X. If $\mathcal{Q} = \{S_1, S_2, \ldots, S_\ell\}$ and $A = \bigcup_{i=1}^k (S_i \times S_i)$, then $\mathfrak{U} = \{F \subset X \times X : F \supseteq A\}$. Therefore,

$$|X| = \sum_{i=1}^{k} |S_i|, |A| = \sum_{i=1}^{k} |S_i|^2, \text{ and } |\mathfrak{U}| = 2^{|X|^2 - |A|}.$$

Now we show that $|X|^2 - |A|$ is even. If $|S_i|$ is even for each i = 1, 2, ..., k, then |X| is even and |A| is even. Thus, $|X|^2 - |A|$ is even. Suppose that there is some S_i such that $|S_i|$ is odd. Without loss of generality, we assume that

$$|S_i|$$
 is odd for $1 \le i \le \ell$ and $|S_i|$ is even for $\ell + 1 \le i \le k$.

If |X| is even, then ℓ is even and hence |A| is even. Thus, $|X|^2 - |A|$ is even. If |X| is odd, then ℓ is odd and hence |A| is odd. Thus, $|X|^2 - |A|$ is even. Therefore, $|X|^2 - |A| = 2j$, for some $j \in \mathbb{N}$. So, $|\mathfrak{U}| = 2^{2j} = 4^j$.

3 Cardinality of uniform structures

We first find the number of partitions of a set X with n elements, associated with a given partition P of n. We also find the number of elements in each uniform structure on X, which are associated with P.

Theorem 3.1. For a given $P \in \mathcal{P}_n$, let t, n_k 's, and q_k 's be as in (2), and $m = n^2 - \sum_{k=1}^{l} q_k n_k^2$. Then,

$$(a) \quad |\mathscr{E}_P| = \prod_{k=1}^t \left(\begin{array}{c} \prod_{j=0}^{q_k-1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i\right) - j n_k \\ \frac{n_k}{q_k!} \right) \end{array} \right)$$

(b) $|\mathfrak{U}_{\mathcal{Q}}| = 2^m$, for all $\mathcal{Q} \in \mathscr{E}_P$.

Proof. If t, n_k 's, and q_k 's are depending on P as mentioned in (2), we can write

$$n = \underbrace{n_1 + n_1 + \dots + n_1}_{q_1 \text{-times}} + \underbrace{n_2 + n_2 + \dots + n_2}_{q_2 \text{-times}} + \dots + \underbrace{n_t + n_t + \dots + n_t}_{q_t \text{-times}}.$$

where $n_i \neq n_j$ for $i \neq j$. To choose a partition of X in \mathscr{E}_P , we first choose a set S_1 with $|S_1| = n_1$ from the n elements of X, then choose a set S_2 with $|S_2| = n_1$ from the remaining $n - n_1$ elements of X, then choose a set S_3 with $|S_3| = n_1$ from the remaining $n - 2n_1$ elements of X, and so on. We repeat this procedure for q_1 times. In the q_1 -st time, we choose a set S_{q_1} with $|S_{q_1}| = n_1$ from the remaining $n - (q_1 - 1)n_1$ elements of X. Thus there are

$$\binom{n}{n_1}\binom{n-n_1}{n_1}\binom{n-2n_1}{n_1}\cdots\binom{n-(q_1-1)n_1}{n_1}$$

such selections. Since each permutation on $\{S_1, S_2, \ldots, S_{q_1}\}$ will contribute a repetition in the counting, there are

$$\frac{\binom{n}{n_1}\binom{n-n_1}{n_1}\binom{n-2n_1}{n_1}\cdots\binom{n-(q_1-1)n_1}{n_1}}{q_1!} = \frac{\prod_{j=0}^{q_1-1}\binom{n-jn_1}{n_1}}{q_1!}$$

selections of the pairwise disjoint subsets $S_1, S_2, \ldots, S_{q_1}$ of X with $|S_i| = n_1$, for all $1 \le i \le q_1$.

Similarly, for each $k \in \{2, \dots, t\}$, if $\mu_k = \sum_{i=1}^{k-1} q_i$ and $\sigma_k = \left| \bigcup_{i=1}^{\mu_k} S_i \right| = \sum_{i=1}^{k-1} q_i n_i$, then there are

$$\frac{\binom{n-\sigma_k}{n_k}\binom{n-\sigma_k-n_k}{n_k}\binom{n-\sigma_k-2n_k}{n_k}\cdots\binom{n-\sigma_k-(q_k-1)n_k}{n_k}}{q_k!} = \frac{\prod_{j=0}^{q_k-1}\binom{n-\sigma_k-jn_k}{n_k}}{q_k!}$$

selections of pairwise disjoint subsets $S_{\mu_k+1}, S_{\mu_k+2}, \ldots, S_{\mu_k+q_k}$ of $X \setminus \bigcup_{i=1}^{\mu_k} S_i$ with $|S_i| = n_k$, for all $\mu_k + 1 \le i \le \mu_k + q_k$. At the end of this process, we get that

$$\prod_{k=1}^{t} \left(\begin{array}{c} \prod_{j=0}^{q_k-1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i\right) - j n_k \\ \hline n_k \end{array} \right) \\ \hline q_k! \end{array} \right)$$

number of selections of pairwise disjoint subsets S_1, S_2, \ldots, S_ℓ of X such that

$$S_{i}| = \begin{cases} n_{1}, & \text{if } 1 \leq i \leq q_{1} \\ n_{2}, & \text{if } q_{1} + 1 \leq i \leq q_{1} + q_{2} \\ \vdots & & \\ n_{t}, & \text{if } \sum_{k=1}^{t-1} q_{k} + 1 \leq i \leq \sum_{k=1}^{t} q_{k} = \ell, \end{cases}$$
(3)

This completes the proof of (a).

To prove (b), let $\mathcal{Q} = \{S_1, S_2, \dots, S_\ell\} \in \mathscr{E}_P$ be arbitrary and let S_i 's satisfy (3). If $A = \bigcup_{i=1}^{t} (S_i \times S_i)$, then $|A| = \sum_{i=1}^{\ell} |S_i|^2 = \sum_{k=1}^{t} q_k n_k^2$. Using Corollary 2.2, we get that $|\mathfrak{U}_{\mathcal{Q}}| = 2^{n^2 - |A|} = 2^m$. \Box The following corollary is a particular case of the previous theorem.

Corollary 3.1. If P is a partition of n into distinct parts n_1, n_2, \ldots, n_t , then

(a)
$$|\mathscr{E}_P| = \binom{n}{n_1}\binom{n-n_1}{n_2}\binom{n-n_1-n_2}{n_3}\cdots\binom{n-n_1-n_2-\cdots-n_{k-1}}{n_k} = \binom{n}{n_1,n_2,\dots,n_k}$$
, where $\binom{n}{n_1,n_2,\dots,n_k} = \frac{n!}{n_1!n_2!\cdots n_k!}$.

(b)
$$|\mathfrak{U}_{\mathcal{Q}}| = 2^{m}$$
, for all $\mathcal{Q} \in \mathscr{E}_{P}$ where

$$m = n^{2} - \left(\binom{n}{n_{1}}^{2} + \binom{n-n_{1}}{n_{2}}^{2} + \binom{n-n_{1}-n_{2}}{n_{3}}^{2} + \dots + \binom{n-n_{1}-n_{2}-\dots-n_{k-1}}{n_{k}}^{2} \right).$$

The corollary follows at once, since the given partition is same as $P \in \mathcal{P}_n$ such that $\{n_1, n_2, \ldots, n_t\} = \{i : P(i) \neq 0\}, P(n_k) = 1$, for all $k = 1, 2, \ldots, t$.

From what we have developed so far, we get the following analytical formula for the Bell numbers.

Corollary 3.2. The Bell number ϵ_n is given by

$$\epsilon_n = \sum_{P \in \mathcal{P}_n} \left(\prod_{k=1}^t \left(\begin{array}{c} \prod_{j=0}^{q_k-1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i\right) - j n_k \right) \\ \hline n_k \end{array} \right) \right) \right)$$

where t, n_k 's, and q_k 's are depending on P as mentioned in (2).

4 Conclusion

We find the number of uniform structures on a given set of n elements and we obtain a novel expression for the Bell numbers.

References

- [1] Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35(2), 258–277.
- [2] Weil, A. (1937). Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Herman, Paris.
- [3] Willard, S. (1970). *General Topology*. Addison-Wesley Publishing Company Inc., Philippines.