Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2024, Volume 30, Number 4, 797–802 DOI: 10.7546/nntdm.2024.30.4.797-802

An analytical formula for Bell numbers

Vembu Ramachandran¹ and Roopkumar Rajakumar²

¹ Department of Mathematics, SBK College Aruppukottai – 626101, India e-mail: msrvembu@yahoo.co.in

² Department of Mathematics, Central University of Tamil Nadu Thiruvarur – 610005, India e-mail: roopkumarr@rediffmail.com

Received: 21 September 2023 Revised: 22 November 2024 Accepted: 26 November 2024 **Online First: 26 November 2024**

Abstract: We present an analytic formula for Bell numbers through counting the number of uniform structures on a finite set.

Keywords: Bell numbers, Counting the partitions, Uniform structure. 2020 Mathematics Subject Classification: 11B73, 05A18, 54E15.

1 Introduction

The Bell number ϵ_n is defined as the number of partitions of a set of n elements. Eric Temple Bell [1] presented an explicit formula for the Bell numbers as follows:

$$
\epsilon_n = \sum_{s=1}^n \frac{1}{(s-1)!} \left[\sum_{r=0}^{s-1} (-1)^r {s-1 \choose r} (s-r)^{n-1} \right], \ n \ge 1. \tag{1}
$$

André Weil [2] introduced the uniform structure to study the uniform continuity in the context of topological spaces. We first recall the definition of the uniform structure on a set X .

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Definition 1.1 ([3]). Let X be a non-empty set. A collection \mathfrak{U} of subsets of $X \times X$ is said to be *a uniform structure or diagonal uniformity on* X *if*

- *(U1)* $\Delta \subset E$ *, for all* $E \in \mathfrak{U}$ *, where* $\Delta = \{(x, x) : x \in X\}$ *.*
- *(U2)* $E \cap F$ ∈ $\mathfrak U$ *whenever* $E, F \in \mathfrak U$.
- *(U3) If* $E \in \mathfrak{U}$ *and* $E \subseteq F \subseteq X \times X$ *, then* $F \in \mathfrak{U}$ *.*
- *(U4)* E^{-1} ∈ *Li whenever* $E \in \mathfrak{U}$ *, where* $E^{-1} = \{(x, y) : (y, x) \in E\}$ *.*
- *(U5)* For each $E \in \mathfrak{U}$, there exists $F \in \mathfrak{U}$ such that $F \circ F \subseteq E$, where $F \circ F = \{(x, y) :$ $(x, z), (z, y) \in F$, for some $z \in X$ *.*

Throughout this paper, we fix X as a nonempty finite set. We first introduce some notations and phrases.

- For any set S , $|S|$ denotes the cardinality of S .
- Let \mathcal{P}_n be the class of all partitions of the positive integer n. Every element of \mathcal{P}_n can be considered as a function $P: \{1, 2, \ldots, n\} \rightarrow \{0, 1, 2, \ldots, n\}$ which satisfies the condition $\sum_{n=1}^{\infty}$ $i=1$ $P(i)i = n$. If P is the function representing a partition of n, then $P(i)$ counts the number of occurrences of i in the partition of n. In particular, if

$$
n = \underbrace{n_1 + n_1 + \cdots + n_1}_{q_1 \text{-times}} + \underbrace{n_2 + n_2 + \cdots + n_2}_{q_2 \text{-times}} + \cdots + \underbrace{n_t + n_t + \cdots + n_t}_{q_t \text{-times}}
$$

is a partition of n, then $P(n_k) = q_k$, for $k = 1, 2, \ldots, t$ and $P(i) = 0$ for $i \neq n_k$ for any k.

- By a partition of X, we mean a collection $\mathcal{Q} = \{S_1, S_2, \dots, S_\ell\}$ of nonempty subsets of X such that \bigcup^{ℓ} $i=1$ $S_i = X$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.
- For a given $P \in \mathcal{P}_n$, let

$$
\{n_1, n_2, \dots, n_t\} = \{i : P(i) \neq 0\} \text{ and } P(n_k) = q_k, \forall k = 1, 2, \dots, t.
$$
 (2)

Let $\ell = \sum^{n}$ $i=1$ $P(i)$ and \mathscr{E}_P denote the class of all partitions $\{S_1, S_2, \ldots, S_\ell\}$ of the set X such that

$$
|S_i| = \begin{cases} n_1, & \text{if } 1 \le i \le q_1 \\ n_2, & \text{if } q_1 + 1 \le i \le q_1 + q_2 \\ \vdots \\ n_t, & \text{if } \sum_{k=1}^{t-1} q_k + 1 \le i \le \sum_{k=1}^t q_k. \end{cases}
$$

Note that $\ell = \sum_{n=1}^{\infty}$ $\frac{i=1}{i}$ $P(i) = \sum^{t}$ $k=1$ $P(n_k) = \sum^t$ $k=1$ q_k .

• For given positive integers n and r such that $r \leq n$, $\binom{n}{r}$ $\binom{n}{r}$ denotes the number of ways of choosing r objects from n objects.

In this paper, we count the number of uniform structures on a set of n elements and find the cardinality of each uniform structure on a finite set. Finally, we present yet another formula for the Bell number ϵ_n , which is written in terms of the partitions of n.

2 Characterization theorem

Theorem 2.1. Let X be a finite set and $\mathfrak U$ be a collection of subsets of $X \times X$. Then $\mathfrak U$ is a *uniform structure on* X *if and only if*

$$
\mathfrak{U} = \{ F \subseteq X \times X : F \supseteq A \} \text{ where } A = \bigcup_{i=1}^{k} (S_i \times S_i)
$$

for some partition $\mathcal{Q} = \{S_1, S_2, \ldots, S_k\}$ *of* X.

Proof. Assume that $\mathfrak U$ is a uniform structure and let $A = \bigcap$ $F \in \mathfrak{U}$ F . Since X is finite, using the axiom (U2), we get $A \in \mathfrak{U}$ and clearly $F \supseteq A$, for all $F \in \mathfrak{U}$. We observe that A is an equivalence relation on X. Indeed, the axioms $(U1)$, $(U4)$, and $(U5)$ of the uniform structure imply

$$
\Delta \subseteq A, \ A^{-1} = A, \text{ and } A \circ A \subseteq A,
$$

respectively. The equivalence relation A gives a partition of X, say $\{S_1, S_2, \ldots, S_k\}$. We observe that $A = \bigcup_{i=1}^{k} (S_i \times S_i)$ because $(x, y) \in A$ if and only if $x, y \in S_{i_0}$ for some $i_0 \in \{1, 2, \dots k\}$ if and only if $(x, y) \in S_{i_0} \times S_{i_0}$ if and only if $(x, y) \in \bigcup_{i=1}^k (S_i \times S_i)$. Clearly, by the definition of A, we get $\mathfrak{U} = \{ F \subseteq X \times X : F \supseteq A \}.$

Conversely, let $\{S_1, S_2, \ldots, S_k\}$ be a partition of X , $A = \bigcup_{i=1}^k (S_i \times S_i)$ and $\mathfrak{U} = \{F \subseteq X \times X :$ $F \supseteq A$. We shall show that $\mathfrak U$ is a uniform structure.

- (U1) Given $x \in X$, there exists $i_x \in \{1, 2, ..., k\}$ such that $x \in S_{i_x}$. Therefore, $(x, x) \in$ $S_{i_x} \times S_{i_x} \subseteq A \subseteq E$, for all $x \in X$ and for all $E \in \mathfrak{U}$. Hence $\Delta \subseteq E$, for all $E \in \mathfrak{U}$.
- (U2) If $E, F \in \mathfrak{U}$, then $E \supseteq A$ and $F \supseteq A$ and hence $E \cap F \supseteq A$. Thus $E \cap F \in \mathfrak{U}$.
- (U3) If $E \in \mathfrak{U}$ and $F \supseteq E$, then $F \supseteq E \supseteq A$ and hence $F \in \mathfrak{U}$.
- (U4) Since $(S_i \times S_i)^{-1} = (S_i \times S_i)$, we have $A^{-1} = A$. Therefore, for a given $E \in \mathfrak{U}$, we have $A \subseteq E$ and hence $A = A^{-1} \subseteq E^{-1}$. Thus $E^{-1} \in \mathfrak{U}$.
- (U5) We first show that $A \circ A \subseteq A$. If $(x, z) \in A \circ A$, then there exists $y \in X$ such that $(x, y), (y, z) \in A$. Then, there exist $i, j \in \{1, 2, \ldots, k\}$ such that $(x, y) \in S_i \times S_i$ and $(y, z) \in S_j \times S_j$. Therefore, $y \in S_i \cap S_j$. Since $\{S_1, S_2, \ldots, S_k\}$ is a partition of X, we have $i = j$ and hence $x, z \in S_i$, which implies that $(x, z) \in S_i \times S_i \subseteq A$. Thus, we get $A \circ A \subseteq A$. Therefore, for each $E \in \mathfrak{U}$, we see that $A \circ A \subseteq A \subseteq E$.

Thus $\mathfrak U$ is a uniform structure.

Hereafter, for a given partition $\mathcal Q$ of X, $\mathfrak{U}_{\mathcal Q}$ denotes the unique uniform structure associated with Q as in the above theorem. That is, Q and \mathfrak{U}_Q satisfy the following condition:

 \Box

$$
\bigcup_{S \in \mathcal{Q}} (S \times S) = \bigcap_{F \in \mathfrak{U}_{\mathcal{Q}}} F.
$$

We say that a uniform structure $\mathfrak U$ on X is associated with $P \in \mathcal P_n$ if $\mathfrak U = \mathfrak U_{\mathcal Q}$, for some $\mathcal Q \in \mathscr E_P$.

Proof. Let X be a set with n elements. The map $\mathcal{Q} \mapsto \mathfrak{U}_{\mathcal{Q}}$ is a bijection between the class of all partitions on X and the class of all uniform structures on X . Hence the number of uniform structures on X is the number of partitions of X which is the Bell number ϵ_n . \Box

Since $\mathfrak{U} = \{F \subseteq X \times X : F \supseteq A\} = \{A \cup B : B \subseteq (X \times X) \setminus A\}$, we obtain the following corollary.

Corollary 2.2. The cardinality of a uniform structure on a finite set X is $2^{|X|^2-|A|}$, where $A \subseteq$ $X \times X$ *is such that* $\mathfrak{U} = \{ F \subseteq X \times X : F \supseteq A \}.$

Corollary 2.3. The cardinality of any uniform structure \mathfrak{U} is 4^j for some $j \in \mathbb{N}$.

Proof. Let $\mathfrak U$ be a uniform structure on X. Then, $\mathfrak U = \mathfrak U_{\mathcal Q}$, for some partition $\mathcal Q$ of X. If $\mathcal{Q} = \{S_1, S_2, \dots, S_\ell\}$ and $A = \bigcup^k$ $i=1$ $(S_i \times S_i)$, then $\mathfrak{U} = \{ F \subset X \times X : F \supseteq A \}$. Therefore,

$$
|X| = \sum_{i=1}^{k} |S_i|, |A| = \sum_{i=1}^{k} |S_i|^2, \text{ and } |\mathfrak{U}| = 2^{|X|^2 - |A|}.
$$

Now we show that $|X|^2 - |A|$ is even. If $|S_i|$ is even for each $i = 1, 2, ..., k$, then $|X|$ is even and |A| is even. Thus, $|X|^2 - |A|$ is even. Suppose that there is some S_i such that $|S_i|$ is odd. Without loss of generality, we assume that

$$
|S_i|
$$
 is odd for $1 \le i \le \ell$ and $|S_i|$ is even for $\ell + 1 \le i \le k$.

If |X| is even, then ℓ is even and hence |A| is even. Thus, $|X|^2 - |A|$ is even. If |X| is odd, then l is odd and hence |A| is odd. Thus, $|X|^2 - |A|$ is even. Therefore, $|X|^2 - |A| = 2j$, for some $j \in \mathbb{N}$. So, $|\mathfrak{U}| = 2^{2j} = 4^j$. \Box

3 Cardinality of uniform structures

We first find the number of partitions of a set X with n elements, associated with a given partition P of n. We also find the number of elements in each uniform structure on X, which are associated with P.

Theorem 3.1. For a given $P \in \mathcal{P}_n$, let t, n_k 's, and q_k 's be as in (2), and $m = n^2 - \sum_{k=1}^{\infty}$ $k=1$ $q_k n_k^2$. *Then,*

.

$$
(a) \ \left| \mathcal{E}_P \right| = \prod_{k=1}^t \left(\frac{\prod_{j=0}^{q_k-1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i \right) - j n_k \right)}{n_k} \right)
$$

(b) $|\mathfrak{U}_{\mathcal{O}}| = 2^m$ *, for all* $\mathcal{Q} \in \mathscr{E}_{P}$ *.*

Proof. If t, n_k 's, and q_k 's are depending on P as mentioned in (2), we can write

$$
n = \underbrace{n_1 + n_1 + \cdots + n_1}_{q_1 \text{-times}} + \underbrace{n_2 + n_2 + \cdots + n_2}_{q_2 \text{-times}} + \cdots + \underbrace{n_t + n_t + \cdots + n_t}_{q_t \text{-times}}.
$$

where $n_i \neq n_j$ for $i \neq j$. To choose a partition of X in \mathcal{E}_P , we first choose a set S_1 with $|S_1| = n_1$ from the *n* elements of X, then choose a set S_2 with $|S_2| = n_1$ from the remaining $n - n_1$ elements of X, then choose a set S_3 with $|S_3| = n_1$ from the remaining $n - 2n_1$ elements of X, and so on. We repeat this procedure for q_1 times. In the q_1 -st time, we choose a set S_{q_1} with $|S_{q_1}| = n_1$ from the remaining $n - (q_1 - 1)n_1$ elements of X. Thus there are

$$
\binom{n}{n_1}\binom{n-n_1}{n_1}\binom{n-2n_1}{n_1}\cdots\binom{n-(q_1-1)n_1}{n_1}
$$

such selections. Since each permutation on $\{S_1, S_2, \ldots, S_{q_1}\}\$ will contribute a repetition in the counting, there are

$$
\frac{\binom{n}{n_1}\binom{n-n_1}{n_1}\binom{n-2n_1}{n_1}\cdots\binom{n-(q_1-1)n_1}{n_1}}{q_1!} = \frac{\prod_{j=0}^{q_1-1}\binom{n-jn_1}{n_1}}{q_1!}
$$

selections of the pairwise disjoint subsets $S_1, S_2, \ldots, S_{q_1}$ of X with $|S_i| = n_1$, for all $1 \le i \le q_1$.

Similarly, for each $k \in \{2, \ldots, t\}$, if $\mu_k =$ $\sum_{ }^{k-1}$ $i=1$ q_i and $\sigma_k =$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \cup μ_k $i=1$ S_i $\Big| =$ $\sum_{ }^{k-1}$ $i=1$ $q_i n_i$, then there are

$$
\frac{\binom{n-\sigma_k}{n_k}\binom{n-\sigma_k-n_k}{n_k}\binom{n-\sigma_k-2n_k}{n_k}\cdots\binom{n-\sigma_k-(q_k-1)n_k}{n_k}}{q_k!} = \frac{\prod_{j=0}^{q_k-1}\binom{n-\sigma_k-jn_k}{n_k}}{q_k!}
$$

selections of pairwise disjoint subsets $S_{\mu_k+1}, S_{\mu_k+2}, \ldots, S_{\mu_k+q_k}$ of $X \setminus \bigcup$ μ_k $i=1$ S_i with $|S_i| = n_k$, for all $\mu_k + 1 \le i \le \mu_k + q_k$. At the end of this process, we get that

$$
\prod_{k=1}^{t} \left(\frac{\prod_{j=0}^{q_k-1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i \right) - j n_k \right)}{n_k} \right)
$$

number of selections of pairwise disjoint subsets S_1, S_2, \ldots, S_ℓ of X such that

$$
|S_i| = \begin{cases} n_1, & \text{if } 1 \le i \le q_1 \\ n_2, & \text{if } q_1 + 1 \le i \le q_1 + q_2 \\ \vdots & \vdots \\ n_t, & \text{if } \sum_{k=1}^{t-1} q_k + 1 \le i \le \sum_{k=1}^t q_k = \ell, \end{cases} \tag{3}
$$

This completes the proof of (a).

To prove (b), let $\mathcal{Q} = \{S_1, S_2, \ldots, S_\ell\} \in \mathscr{E}_P$ be arbitrary and let S_i 's satisfy (3). If $A = \bigcup_{k=1}^\ell S_k$ $(S_i \times S_i),$ $i=1$ then $|A| = \sum^{\ell}$ $|S_i|^2 = \sum^t$ $q_k n_k^2$. Using Corollary 2.2, we get that $|\mathfrak{U}_{\mathcal{Q}}| = 2^{n^2 - |A|} = 2^m$. \Box $i=1$ $k=1$

The following corollary is a particular case of the previous theorem.

Corollary 3.1. If P is a partition of n into distinct parts n_1, n_2, \ldots, n_t , then

(a)
$$
|\mathcal{E}_P| = \binom{n}{n_1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-n_1-n_2-\cdots-n_{k-1}}{n_k} = \binom{n}{n_1, n_2, \ldots, n_k}
$$
, where $\binom{n}{n_1, n_2, \ldots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$.

(b)
$$
|\mathfrak{U}_{\mathcal{Q}}| = 2^m
$$
, for all $\mathcal{Q} \in \mathcal{E}_P$ where
\n
$$
m = n^2 - \left({n \choose n_1}^2 + {n - n_1 \choose n_2}^2 + {n - n_1 - n_2 \choose n_3}^2 + \cdots + {n - n_1 - n_2 - \cdots - n_{k-1} \choose n_k}^2 \right).
$$

The corollary follows at once, since the given partition is same as $P \in \mathcal{P}_n$ such that ${n_1, n_2, \ldots, n_t} = {i : P(i) \neq 0}, P(n_k) = 1, \text{ for all } k = 1, 2, \ldots, t.$

From what we have developed so far, we get the following analytical formula for the Bell numbers.

Corollary 3.2. *The Bell number* ϵ_n *is given by*

$$
\epsilon_n = \sum_{P \in \mathcal{P}_n} \left(\prod_{k=1}^t \left(\frac{\prod_{j=0}^{q_k - 1} \left(n - \left(\sum_{i=1}^{k-1} q_i n_i \right) - j n_k \right)}{n_k!} \right) \right)
$$

where t *,* n_k *'s, and* q_k *'s are depending on P as mentioned in* (2)*.*

4 Conclusion

We find the number of uniform structures on a given set of n elements and we obtain a novel expression for the Bell numbers.

References

- [1] Bell, E. T. (1934). Exponential polynomials. *Annals of Mathematics*, 35(2), 258–277.
- [2] Weil, A. (1937). *Sur les Espaces à Structure Uniforme et sur la Topologie Générale.* Herman, Paris.
- [3] Willard, S. (1970). *General Topology*. Addison-Wesley Publishing Company Inc., Philippines.