
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2024, Volume 30, Number 4, 797–802
DOI: 10.7546/nntdm.2024.30.4.797-802

An analytical formula for Bell numbers

Vembu Ramachandran1 and Roopkumar Rajakumar2

1 Department of Mathematics, SBK College
Aruppukottai – 626101, India

e-mail: msrvembu@yahoo.co.in
2 Department of Mathematics, Central University of Tamil Nadu

Thiruvarur – 610005, India
e-mail: roopkumarr@rediffmail.com

Received: 21 September 2023 Revised: 22 November 2024
Accepted: 26 November 2024 Online First: 26 November 2024

Abstract: We present an analytic formula for Bell numbers through counting the number of
uniform structures on a finite set.
Keywords: Bell numbers, Counting the partitions, Uniform structure.
2020 Mathematics Subject Classification: 11B73, 05A18, 54E15.

1 Introduction

The Bell number ϵn is defined as the number of partitions of a set of n elements. Eric Temple
Bell [1] presented an explicit formula for the Bell numbers as follows:

ϵn =
n∑

s=1

1

(s− 1)!

[
s−1∑
r=0

(−1)r
(
s− 1

r

)
(s− r)n−1

]
, n ≥ 1. (1)

André Weil [2] introduced the uniform structure to study the uniform continuity in the context
of topological spaces. We first recall the definition of the uniform structure on a set X .

Copyright © 2024 by the Authors. This is an Open Access paper distributed under the
terms and conditions of the Creative Commons Attribution 4.0 International License
(CC BY 4.0). https://creativecommons.org/licenses/by/4.0/



Definition 1.1 ([3]). Let X be a non-empty set. A collection U of subsets of X ×X is said to be
a uniform structure or diagonal uniformity on X if

(U1) ∆ ⊆ E, for all E ∈ U, where ∆ = {(x, x) : x ∈ X}.

(U2) E ∩ F ∈ U whenever E,F ∈ U.

(U3) If E ∈ U and E ⊆ F ⊆ X ×X , then F ∈ U.

(U4) E−1 ∈ U whenever E ∈ U, where E−1 = {(x, y) : (y, x) ∈ E}.

(U5) For each E ∈ U, there exists F ∈ U such that F ◦ F ⊆ E, where F ◦ F = {(x, y) :

(x, z), (z, y) ∈ F, for some z ∈ X}.

Throughout this paper, we fix X as a nonempty finite set. We first introduce some notations
and phrases.

• For any set S, |S| denotes the cardinality of S.

• Let Pn be the class of all partitions of the positive integer n. Every element of Pn can be
considered as a function P : {1, 2, . . . , n} → {0, 1, 2, . . . , n} which satisfies the condition
n∑

i=1

P (i)i = n. If P is the function representing a partition of n, then P (i) counts the

number of occurrences of i in the partition of n. In particular, if

n = n1 + n1 + · · ·+ n1︸ ︷︷ ︸
q1-times

+n2 + n2 + · · ·+ n2︸ ︷︷ ︸
q2-times

+ · · ·+ nt + nt + · · ·+ nt︸ ︷︷ ︸
qt-times

is a partition of n, then P (nk) = qk, for k = 1, 2, . . . , t and P (i) = 0 for i ̸= nk for any k.

• By a partition of X , we mean a collection Q = {S1, S2, . . . , Sℓ} of nonempty subsets of X

such that
ℓ⋃

i=1

Si = X and Si ∩ Sj = ∅ for i ̸= j.

• For a given P ∈ Pn, let

{n1, n2, . . . , nt} = {i : P (i) ̸= 0} and P (nk) = qk,∀k = 1, 2, . . . , t. (2)

Let ℓ =
n∑

i=1

P (i) and EP denote the class of all partitions {S1, S2, . . . , Sℓ} of the set X such

that

|Si| =



n1, if 1 ≤ i ≤ q1

n2, if q1 + 1 ≤ i ≤ q1 + q2
...

nt, if
t−1∑
k=1

qk + 1 ≤ i ≤
t∑

k=1

qk.

Note that ℓ =
n∑

i=1

P (i) =
t∑

k=1

P (nk) =
t∑

k=1

qk.

• For given positive integers n and r such that r ≤ n,
(
n
r

)
denotes the number of ways of

choosing r objects from n objects.

In this paper, we count the number of uniform structures on a set of n elements and find the
cardinality of each uniform structure on a finite set. Finally, we present yet another formula for
the Bell number ϵn, which is written in terms of the partitions of n.
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2 Characterization theorem

Theorem 2.1. Let X be a finite set and U be a collection of subsets of X × X . Then U is a
uniform structure on X if and only if

U = {F ⊆ X ×X : F ⊇ A} where A =
k
∪
i=1

(Si × Si)

for some partition Q = {S1, S2, . . . , Sk} of X .

Proof. Assume that U is a uniform structure and let A =
⋂
F∈U

F . Since X is finite, using the axiom

(U2), we get A ∈ U and clearly F ⊇ A, for all F ∈ U. We observe that A is an equivalence
relation on X . Indeed, the axioms (U1), (U4), and (U5) of the uniform structure imply

∆ ⊆ A, A−1 = A, and A ◦ A ⊆ A,

respectively. The equivalence relation A gives a partition of X , say {S1, S2, . . . , Sk}. We observe

that A =
k
∪
i=1

(Si × Si) because (x, y) ∈ A if and only if x, y ∈ Si0 for some i0 ∈ {1, 2, . . . k} if

and only if (x, y) ∈ Si0 × Si0 if and only if (x, y) ∈
k
∪
i=1

(Si × Si). Clearly, by the definition of A,

we get U = {F ⊆ X ×X : F ⊇ A}.

Conversely, let {S1, S2, . . . , Sk} be a partition of X , A =
k
∪
i=1

(Si×Si) and U = {F ⊆ X×X :

F ⊇ A}. We shall show that U is a uniform structure.

(U1) Given x ∈ X , there exists ix ∈ {1, 2, . . . , k} such that x ∈ Six . Therefore, (x, x) ∈
Six × Six ⊆ A ⊆ E, for all x ∈ X and for all E ∈ U. Hence ∆ ⊆ E, for all E ∈ U.

(U2) If E,F ∈ U, then E ⊇ A and F ⊇ A and hence E ∩ F ⊇ A. Thus E ∩ F ∈ U.

(U3) If E ∈ U and F ⊇ E, then F ⊇ E ⊇ A and hence F ∈ U.

(U4) Since (Si × Si)
−1 = (Si × Si), we have A−1 = A. Therefore, for a given E ∈ U, we have

A ⊆ E and hence A = A−1 ⊆ E−1. Thus E−1 ∈ U.

(U5) We first show that A ◦ A ⊆ A. If (x, z) ∈ A ◦ A, then there exists y ∈ X such that
(x, y), (y, z) ∈ A. Then, there exist i, j ∈ {1, 2, . . . , k} such that (x, y) ∈ Si × Si and
(y, z) ∈ Sj × Sj . Therefore, y ∈ Si ∩ Sj . Since {S1, S2, . . . , Sk} is a partition of X , we
have i = j and hence x, z ∈ Si, which implies that (x, z) ∈ Si × Si ⊆ A. Thus, we get
A ◦ A ⊆ A. Therefore, for each E ∈ U, we see that A ◦ A ⊆ A ⊆ E.

Thus U is a uniform structure.

Hereafter, for a given partition Q of X , UQ denotes the unique uniform structure associated
with Q as in the above theorem. That is, Q and UQ satisfy the following condition:⋃

S∈Q

(S × S) =
⋂

F∈UQ

F.

We say that a uniform structure U on X is associated with P ∈ Pn if U = UQ, for some Q ∈ EP .
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Corollary 2.1. The number of uniform structures on a set of n elements is the Bell number ϵn.

Proof. Let X be a set with n elements. The map Q 7→ UQ is a bijection between the class of
all partitions on X and the class of all uniform structures on X . Hence the number of uniform
structures on X is the number of partitions of X which is the Bell number ϵn.

Since U = {F ⊆ X ×X : F ⊇ A} = {A∪B : B ⊆ (X ×X) \A}, we obtain the following
corollary.

Corollary 2.2. The cardinality of a uniform structure on a finite set X is 2|X|2−|A|, where A ⊆
X ×X is such that U = {F ⊆ X ×X : F ⊇ A}.

Corollary 2.3. The cardinality of any uniform structure U is 4j for some j ∈ N.

Proof. Let U be a uniform structure on X . Then, U = UQ, for some partition Q of X . If

Q = {S1, S2, . . . , Sℓ} and A =
k⋃

i=1

(Si × Si), then U = {F ⊂ X ×X : F ⊇ A}. Therefore,

|X| =
k∑

i=1

|Si|, |A| =
k∑

i=1

|Si|2, and |U| = 2|X|2−|A|.

Now we show that |X|2−|A| is even. If |Si| is even for each i = 1, 2, . . . , k, then |X| is even and
|A| is even. Thus, |X|2−|A| is even. Suppose that there is some Si such that |Si| is odd. Without
loss of generality, we assume that

|Si| is odd for 1 ≤ i ≤ ℓ and |Si| is even for ℓ+ 1 ≤ i ≤ k.

If |X| is even, then ℓ is even and hence |A| is even. Thus, |X|2 − |A| is even. If |X| is odd, then
ℓ is odd and hence |A| is odd. Thus, |X|2 − |A| is even. Therefore, |X|2 − |A| = 2j, for some
j ∈ N. So, |U| = 22j = 4j .

3 Cardinality of uniform structures

We first find the number of partitions of a set X with n elements, associated with a given partition
P of n. We also find the number of elements in each uniform structure on X , which are associated
with P .

Theorem 3.1. For a given P ∈ Pn, let t, nk’s, and qk’s be as in (2), and m = n2 −
t∑

k=1

qknk
2.

Then,

(a) |EP | =
t∏

k=1


qk−1∏
j=0

 n−
(

k−1∑
i=1

qini

)
− jnk

nk


qk!

.

(b) |UQ| = 2m, for all Q ∈ EP .
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Proof. If t, nk’s, and qk’s are depending on P as mentioned in (2), we can write

n = n1 + n1 + · · ·+ n1︸ ︷︷ ︸
q1-times

+n2 + n2 + · · ·+ n2︸ ︷︷ ︸
q2-times

+ · · ·+ nt + nt + · · ·+ nt︸ ︷︷ ︸
qt-times

.

where ni ̸= nj for i ̸= j. To choose a partition of X in EP , we first choose a set S1 with |S1| = n1

from the n elements of X , then choose a set S2 with |S2| = n1 from the remaining n−n1 elements
of X , then choose a set S3 with |S3| = n1 from the remaining n− 2n1 elements of X , and so on.
We repeat this procedure for q1 times. In the q1-st time, we choose a set Sq1 with |Sq1| = n1 from
the remaining n− (q1 − 1)n1 elements of X . Thus there are(

n

n1

)(
n− n1

n1

)(
n− 2n1

n1

)
· · ·
(
n− (q1 − 1)n1

n1

)
such selections. Since each permutation on {S1, S2, . . . , Sq1} will contribute a repetition in the
counting, there are

(
n
n1

)(
n−n1

n1

)(
n−2n1

n1

)
· · ·
(
n−(q1−1)n1

n1

)
q1!

=

q1−1∏
j=0

(
n− jn1

n1

)
q1!

selections of the pairwise disjoint subsets S1, S2, . . . , Sq1 of X with |Si| = n1, for all 1 ≤ i ≤ q1.

Similarly, for each k ∈ {2, . . . , t}, if µk =
k−1∑
i=1

qi and σk =

∣∣∣∣ µk⋃
i=1

Si

∣∣∣∣ = k−1∑
i=1

qini, then there are

(
n−σk

nk

)(
n−σk−nk

nk

)(
n−σk−2nk

nk

)
· · ·
(
n−σk−(qk−1)nk

nk

)
qk!

=

qk−1∏
j=0

(
n− σk − jnk

nk

)
qk!

selections of pairwise disjoint subsets Sµk+1, Sµk+2, . . . , Sµk+qk of X \
µk⋃
i=1

Si with |Si| = nk, for

all µk + 1 ≤ i ≤ µk + qk. At the end of this process, we get that

t∏
k=1


qk−1∏
j=0

 n−
(

k−1∑
i=1

qini

)
− jnk

nk


qk!


number of selections of pairwise disjoint subsets S1, S2, . . . , Sℓ of X such that

|Si| =



n1, if 1 ≤ i ≤ q1

n2, if q1 + 1 ≤ i ≤ q1 + q2
...

nt, if
t−1∑
k=1

qk + 1 ≤ i ≤
t∑

k=1

qk = ℓ,

. (3)

This completes the proof of (a).

To prove (b), let Q={S1, S2, . . . , Sℓ} ∈ EP be arbitrary and let Si’s satisfy (3). If A=
ℓ⋃

i=1

(Si×Si),

then |A| =
ℓ∑

i=1

|Si|2 =
t∑

k=1

qknk
2. Using Corollary 2.2, we get that |UQ| = 2n

2−|A| = 2m.
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The following corollary is a particular case of the previous theorem.

Corollary 3.1. If P is a partition of n into distinct parts n1, n2, . . . , nt, then

(a) |EP | =
(
n
n1

)(
n−n1

n2

)(
n−n1−n2

n3

)
· · ·
(
n−n1−n2−···−nk−1

nk

)
=
(

n
n1,n2,...,nk

)
, where(

n
n1,n2,...,nk

)
= n!

n1!n2!···nk!
.

(b) |UQ| = 2m, for all Q ∈ EP where

m = n2 −
((

n
n1

)2
+
(
n−n1

n2

)2
+
(
n−n1−n2

n3

)2
+ · · ·+

(
n−n1−n2−···−nk−1

nk

)2)
.

The corollary follows at once, since the given partition is same as P ∈ Pn such that
{n1, n2, . . . , nt} = {i : P (i) ̸= 0}, P (nk) = 1, for all k = 1, 2, . . . , t.

From what we have developed so far, we get the following analytical formula for the Bell
numbers.

Corollary 3.2. The Bell number ϵn is given by

ϵn =
∑
P∈Pn


t∏

k=1


qk−1∏
j=0

 n−
(

k−1∑
i=1

qini

)
− jnk

nk


qk!




where t, nk’s, and qk’s are depending on P as mentioned in (2).

4 Conclusion

We find the number of uniform structures on a given set of n elements and we obtain a novel
expression for the Bell numbers.
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