New congruences modulo powers of 2 for k-regular overpartition pairs

Riyajur Rahman and Nipen Saikia
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 4, Pages 691–703
DOI: 10.7546/nntdm.2024.30.4.691-703
Full paper (PDF, 230 Kb)

Details

Authors and affiliations

Riyajur Rahman
Department of Mathematics, Rajiv Gandhi University
Rono Hills, Doimukh, Arunachal Pradesh, India

Nipen Saikia
Department of Mathematics, Rajiv Gandhi University
Rono Hills, Doimukh, Arunachal Pradesh, India

Abstract

Let \overline{B}_{k}(n) denote the number of k regular overpartition pairs where a k-regular overpartition pair of n is a pair of k-regular overpartitions (a,b) in which the sum of all the parts is n. Naika and Shivasankar (2017) proved infinite families of congruences for \overline{B}_3(n) and \overline{B}_4(n). In this paper, we prove infinite families of congruences modulo powers of 2 for \overline{B}_{3\gamma}(n), \overline{B}_{4\gamma}(n) and \overline{B}_{6\gamma}(n).

Keywords

  • Overpartition pair
  • k-regular partition
  • Congruences
  • Theta function

2020 Mathematics Subject Classification

  • 11P83
  • 05A17

References

  1. Ahmed, Z., & Baruah, N. D. (2016). New congruences for -regular partition for ∈ {5, 6, 7, 49}. Ramanujan Journal, 40, 649–668.
  2. Berndt, B. C. (1991). Ramanujan’s Notebooks, Part III. Springer-Verlag, New York.
  3. Chen, W. Y. C., & Lin, B. L. S. (2012). Arithmetic properties of overpartition pairs. Acta Arithmetica, 151, 263–277.
  4. Cui, S. P., & Gu, N. S. S. (2013). Arithmetic properties of -regular partitions. Advances in Applied Mathematics, 51, 507–523.
  5. Hirschhorn, M. D. (2000). An identity of Ramanujan and Applications. In: q-Series from a Contemporary Perspective. Contemporary Mathematics, Vol. 254. American Mathematical Society, Providence.
  6. Hirschhorn, M. D. (2017). The Power of q: A Personal Journey. Developments in
    Mathematics, Vol. 49. Springer International Publishing.
  7. Hirschhorn, M. D., & Sellers, J. A. (2010). Arithmetic properties of partitions with odd distinct. Ramanujan Journal, 22, 273–284.
  8. Hirschhorn, M. D., & Sellers, J. A. (2010). Elementary proofs of parity results for 5-regular partitions. Bulletin of the Australian Mathematical Society, 81, 58–63.
  9. Keister, D. M., Sellers, J. A., & Vary, R. G. (2009). Some arithmetic properties of
    overpartition k-tuples. Integers, 9, 181–190, A17.
  10. Keith, W. J. (2014). Congruences for 9-regular partitions modulo 3. Ramanujan Journal, 35, 157–164.
  11. Kim, B. (2011). Overpartition pairs modulo powers of 2. Discrete Mathematics, 311, 835–840.
  12. Lovejoy, J. (2006). Overpartition pairs. Annales de l’Institut Fourier, 56, 781–794.
  13. Naika, M. S. M., Harishkumar, T., & Veeranayaka, T. N. (2021). On some congruences for (j, k)-regular overpartitions. Gulf Journal of Mathematics, 10(1), 43–68.
  14. Naika, M. S. M., & Shivasankar, C. (2017). Arithmetic properties of ℓ-regular overpartition pairs. Turkish Journal of Mathematics, 41, 756–774.
  15. Wang, L. (2016). Arithmetic identities and congruences for partition triples with 3-cores. International Journal of Number Theory, 12(4), 995–1010.

Manuscript history

  • Received: 7 November 2023
  • Revised: 29 October 2024
  • Accepted: 4 November 2024
  • Online First: 6 November 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Rahman, R., & Saikia, N. (2024). New congruences modulo powers of 2 for k-regular overpartition pairs. Notes on Number Theory and Discrete Mathematics, 30(4), 691-703, DOI: 10.7546/nntdm.2024.30.4.691-703.

Comments are closed.