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1 Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive integers called
parts, whose sum is equal to n. The number of partitions of a non-negative integer n is usually
denoted by p(n) (with p(0) = 1) and the generating function is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
, (1)
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where, for any complex number a,

(a; q)∞ =
∞∏
n=0

(1− aqn), |q| < 1. (2)

We will use the notation, for any positive integer t,

Et := (qt; qt)∞. (3)

An overpartition of a non-negative integer n is a partition of n in which the first occurrence of
each part may be overlined. For example, there are 14 overpartitions of 4, namely

4, 4,

3 + 1, 3 + 1, 3 + 1, 3 + 1,

2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

If p(n) denotes the number of overpartition of n, then the generating function of p(n) is given
by

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

. (4)

An overpartition pair of a positive integer nwas defined by Lovejoy [12] as a pair of overpartitions
(a, b) where the sum of all the parts is n. Let pp(n) denote the total number of overpartition pair
of n with pp(0) = 1, then the generating function is given by

∞∑
n=0

pp(n)qn =
(−q; q)2∞
(q; q)2∞

. (5)

An account of pp(n) can be found in [3, 9, 11].
For any positive integer k, a k-regular partition of n is a partition in which no part is divisible

by k. If bk(n) denotes the number of k-regular partitions of n (with bk(0) = 1), then

∞∑
n=0

bk(n)q
n =

Ek

E1

. (6)

One may see [4, 8, 10] and the references therein for some properties of bk(n).
A k-regular overpartition pair of n is an overpartition pair (a, b) such that no part of a and b

is divisible by k and their sum is n. If Bk(n) counts the number of k-regular overpartition pair of
n, then its generating function [14] is given by

∞∑
n=0

Bk(n)q
n =

E2
2E

4
k

E4
1E

2
2k

. (7)

Naika and Shivasankar [14] proved infinite families of congruences modulo 3, 8, 16, 36, 48, 96 for
B3(n) and modulo 3, 16, 64, 96 forB4(n). In this paper, we prove infinite families of congruences
modulo powers of 2 for B3γ(n), B4γ(n) and B6γ(n), where γ is any positive integer.
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2 Some q-series identities

Ramanujan’s general theta-function f(a, b) [2, p. 34, (18.1)] is defined by

f(a, b) =
∞∑

k=−∞

ak(k+1)/2bk(k−1)/2, |ab| < 1. (8)

Three important special cases of f(a, b) [2, p. 36, Entry 22 (i)–(iii)] are the theta-functions ϕ(q),
ψ(q) and f(q) defined by

ϕ(q) : = f(q, q) =
∞∑

n=−∞

qn
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, (9)

ψ(q) : = f(q, q3) =
∞∑
k=0

qk(k+1)/2 =
(q2; q2)2∞
(q; q)∞

, (10)

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞. (11)

Lemma 2.1. The following 2-dissections hold:

1

E2
1

=
E5

8

E5
2E

2
16

+ 2q
E2

4E
2
16

E5
2E8

, (12)

1

E4
1

=
E14

4

E14
2 E

4
8

+ 4q
E2

4E
4
8

E10
2

, (13)

E2
1 =

E2E
5
8

E2
4E

2
16

− 2q
E2E

2
16

E8

, (14)

E3
3

E1

=
E3

4E
2
6

E2
2E12

+ q
E3

12

E4

. (15)

Equation (12) can be derived from the 2-dissection of ϕ(q) [6, (1.9.4)]. Equation (13) can be
derived from ϕ(q)2 [6, (1.10.1)]. Equation (14) can be derived from Equation (12) by substituting
q by −q, respectively. Equation (15) can be derived from [6, (22.1.14)].

Lemma 2.2. [7] The following 3-dissections hold:

E2

E2
1

=
E4

6E
6
9

E8
3E

3
18

+ 2q
E3

6E
3
9

E7
3

+ 4q2
E2

6E
3
18

E6
3

. (16)

Lemma 2.3. [15, Lemma 2.3] We have

E3
1 = P (q3)− 3qE3

9 , (17)

where

P (q) =
∞∑

m=−∞

(−1)m(6m+ 1)qm(3m+1)/2 = f(−q)φ(q)φ(q3) + 4qf(−q)ψ(q2)ψ(q6).

Lemma 2.4. [2, p.36, Entry 22(iii)]

E1 =
∞∑

n=−∞

(−1)nqn(3n+1)/2. (18)
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Lemma 2.5. [1, Lemma 2.3] For any prime p ≥ 3, we have

E3
1 =

(p−1)∑
k=0

k ̸=(±p−1)/2

(−1)kq(k(k+1))/2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+p(−1)
p−1
2 q

p2−1
8 E3

p2 . (19)

Furthermore, if k ̸= (p− 1)

2
, 0 ≤ k ≤ p− 1, then

(k2 + k)

2
̸≡ (p2 − 1)

8
(mod p).

Lemma 2.6. [4, Theorem 2.2] For any prime p ≥ 5, we have

E1 =

(p−1)/2∑
k=−(p−1)/2
k ̸=(±p−1)/6

(−1)kq(3k
2+k)/2f

(
−q(3p2+(6k+1)p)/2,−q(3p2−(6k+1)p)/2

)

+ (−1)
(±p−1)

6 q
(p2−1)

24 Ep2 , (20)

where

±p− 1

6
=


(p− 1)

6
, if p ≡ 1 (mod 6),

(−p− 1)

6
, if p ≡ −1 (mod 6).

Furthermore, if
−(p− 1)

2
≤ k ≤ (p− 1)

2
and k ̸= (±p− 1)

2
,

then
(3k2 + k)

2
̸≡ (p2 − 1)

24
(mod p).

In addition to the above q−series identities, we will be using the following congruence
properties which follow from the binomial theorem: For any positive integer t and m,

E2m
t ≡ Em

2t (mod 2), (21)

E4m
t ≡ E2m

2t (mod 4). (22)

3 Congruences for Bkγ(n)

3.1 Congruences for B3γ(n)

Theorem 3.1. For all integers n ≥ 0 and α ≥ 0, we have

∞∑
n=0

B3γ(2
2α (3n+ 2))qn ≡ 4

E3
6

E2

(mod 8), (23)

B3γ(2
2α(6n+ 5)) ≡ 0 (mod 8). (24)
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Proof. Setting k = 3γ in (7), we obtain
∞∑
n=0

B3γ(n)q
n =

E2
2E

4
3γ

E4
1E

2
6γ

. (25)

Using (16) in (25), we obtain
∞∑
n=0

B3γ(n)q
n =

E4
3γ

E2
6γ

(
E4

6E
6
9

E8
3E

3
18

+ 2q
E3

6E
3
9

E7
3

+ 4q2
E2

6E
3
18

E6
3

)2

. (26)

Extracting the terms involving q3n+2 from (26), we obtain
∞∑
n=0

B3γ(3n+ 2)qn ≡ 4
E4

γE
6
2E

6
3

E2
2γE

14
1

(mod 8). (27)

Using (21) in (27), we obtain
∞∑
n=0

B3γ(3n+ 2)qn ≡ 4

(
E3

6

E2

)
(mod 8), (28)

which is the α = 0 case of equation (23). Suppose that the congruence (23) is true for any integer
α ≥ 0. Extracting the terms involving q2n from both sides of (23), we arrive at

∞∑
n=0

B3γ(2
2α+1 (3n+ 1))qn ≡ 4

E3
3

E1

(mod 8). (29)

Employing (15) in (29) and extracting the terms involving q2n+1, we obtain
∞∑
n=0

B3γ(2
2(α+1) (3n+ 2))qn ≡ 4

E3
6

E2

(mod 8), (30)

which implies that (23) is true for α + 1. Thus, by the principle of mathematical induction, (23)
is true for all integers α ≥ 0. Extracting the terms involving q2n+1 from (23), we complete the
proof of (24).

Theorem 3.2. For all integers n ≥ 0 and α ≥ 0, we have
∞∑
n=0

B3γ(2
2α (3n+ 1))qn ≡ 4

E3
3

E1

(mod 8), (31)

B3γ(2
2α+1(6n+ 5)) ≡ 0 (mod 8). (32)

Proof. Extracting the terms involving q3n+1 from (26), we obtain
∞∑
n=0

B3γ(3n+ 1)qn ≡ 4
E4

γE
7
2E

9
3

E2
2γE

15
1 E

3
6

(mod 8). (33)

Using (21) in (33), we obtain
∞∑
n=0

B3γ(3n+ 1)qn ≡ 4
E3

3

E1

(mod 8), (34)

which is the α = 0 case of equation (31). Suppose that the congruence (31) is true for any integer
α ≥ 0. Employing (15) in (31) and extracting the terms involving q2n+1, we obtain
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∞∑
n=0

B3γ(2
2α+1 (3n+ 2))qn ≡ 4

E3
6

E2

(mod 8). (35)

Extracting the terms involving q2n from (35), we obtain
∞∑
n=0

B3γ(2
2(α+1) (3n+ 1))qn ≡ 4

E3
3

E1

(mod 8), (36)

which implies that (31) is true for α + 1. Thus, by the principle of mathematical induction, (31)
is true for all integers α ≥ 0. Extracting the terms involving q2n+1 from (35), we complete the
proof of (32).

3.2 Congruences for B4γ(n)

Theorem 3.3. Let p ≥ 5 be a prime with
(
−2

p

)
= −1 and 1 ≤ j ≤ (p − 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

B4γ(4n+ 3) ≡ 0 (mod 32), (37)

B4γ(8n+ 7) ≡ 0 (mod 64), (38)
∞∑
n=0

B4γ

(
p2α(8n+ 3)

)
qn ≡ 32E1E8 (mod 64), (39)

B4γ

(
p2α+1(8(pn+ j) + 3p)

)
≡ 0 (mod 64). (40)

Proof. Setting k = 4γ in (7), we obtain
∞∑
n=0

B4γ(n)q
n =

E2
2E

4
4γ

E4
1E

2
8γ

. (41)

Using (13) in (41), we obtain
∞∑
n=0

B4γ(n)q
n =

E2
2E

4
4γ

E2
8γ

(
E14

4

E14
2 E

4
8

+ 4q
E2

4E
4
8

E10
2

)
. (42)

Extracting the terms involving q2n+1 from (42), we obtain
∞∑
n=0

B4γ(2n+ 1)qn = 4
E4

2γE
2
2E

4
4

E2
4γE

8
1

. (43)

Using (13) in (43), we obtain
∞∑
n=0

B4γ(2n+ 1)qn = 4
E4

2γE
2
2E

4
4

E2
4γ

(
E14

4

E14
2 E

4
8

+ 4q
E2

4E
4
8

E10
2

)2

. (44)

Extracting the terms involving q2n+1 from (44), we obtain
∞∑
n=0

B4γ(4n+ 3)qn = 32
E4

γE
20
2

E2
2γE

22
1

. (45)
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Employing (21) in (45), we obtain
∞∑
n=0

B4γ(4n+ 3)qn ≡ 32E9
2 (mod 64) (46)

from (46), we arrive at (37). Extracting the terms involving q2n+1 from (46), we complete the
proof of (38).

Again, extracting the terms involving q2n from (46) and using (21), we obtain
∞∑
n=0

B4γ(8n+ 3)qn ≡ 32E1E8 (mod 64). (47)

Congruence (47) is the α = 0 case of (39). Suppose that congruence (39) is true for all α ≥ 0.
Utilizing (20) in (39), we obtain
∞∑
n=0

B4γ

(
p2α(8n+ 3)

)
qn

≡ 32
{ (p−1)/2∑

k=−(p−1)/2
k ̸=(±p−1)/6

(−1)kq(3k
2+k)/2f

(
−q(3p2+(6k+1)p)/2,−q(3p2−(6k+1)p)/2

)

+(−1)(±p−1)/6q(p
2−1)/24Ep2

}
×
{ (p−1)/2∑

m=−(p−1)/2
m ̸=(p−1)/6

(−1)mq4(3m
2+m)f

(
−q4(3p2+(6m+1)p),−q4(3p2−(6m+1)p)

)

+(−1)(±p−1)/6q8(p
2−1)/24E8p2

}
(mod 64). (48)

Consider the congruence

(3k2 + k)

2
+ 4(3m2 +m) ≡ 3(p2 − 1)

8
(mod p),

which is equal to
(6k + 1)2 + 2(12m+ 2)2 ≡ 0 (mod p).

For
(
−2

p

)
= −1, the above congruence has only solution k = m =

(
±p− 1

6

)
. Therefore,

extracting the terms involving qpn+3(p2−1)/8 from both sides of (48), dividing throughout by
q3(p

2−1)/24 and then replacing qp by q, we obtain
∞∑
n=0

B4γ

(
p2α+1(8n+ 3p)

)
qn ≡ 32EpE8p (mod 64). (49)

Extracting the terms involving qpn from (49) and replacing qp by q, we obtain
∞∑
n=0

B4γ

(
p2α+2(8n+ 3)

)
qn ≡ 32E1E8 (mod 64), (50)

which is the α + 1 case of (39). Thus, by the principle of mathematical induction, we arrive at
(39). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1, from both sides of
(49), we complete the proof of (40).
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Remark 3.4. Setting γ = 1 in (46) and extracting the terms involving q2n+1, we arrive at the
congruence B4(8n+ 7) ≡ 0 (mod 64), due to Naika and Shivasankar, [14].

Theorem 3.5. For all integers n ≥ 0 and α ≥ 0, we have
∞∑
n=0

B4γ

(
4 · 32α+2n+ 32α+2

)
qn ≡ E6

1 (mod 16), (51)

B4γ

(
4 · 32α+2n+ 32α+2

)
≡ B4γ(4n+ 1) (mod 16), (52)

B4γ

(
4 · 32α+2n+ 7 · 32α+1

)
≡ 0 (mod 16), (53)

B4γ

(
4 · 32α+2n+ 11 · 32α+2

)
≡ 0 (mod 16). (54)

Proof. From (44), we note that
∞∑
n=0

B4γ(2n+ 1)qn ≡ 4
E32

4

E26
2 E

8
8

(mod 16). (55)

Employing (22) in (55), we obtain
∞∑
n=0

B4γ(2n+ 1)qn ≡ 4E6
2 (mod 16). (56)

Extracting the terms involving q2n from (56), we obtain
∞∑
n=0

B4γ(4n+ 1)qn ≡ 4(E3
1)

2 (mod 16). (57)

Employing (17) in (57), we obtain
∞∑
n=0

B4γ(4n+ 1)qn ≡ 4(P (q3)− 3qE3
9)

2 (mod 16). (58)

Extracting the terms involving q3n+2 from (58), we obtain
∞∑
n=0

B4γ(4 · 3n+ 32)qn ≡ 4E6
3 (mod 16). (59)

Extracting the terms involving q3n from (59), we obtain
∞∑
n=0

B4γ(4 · 32n+ 32)qn ≡ 4E6
1 (mod 16). (60)

Congruence (60) is the α = 0 case of (51). Suppose that congruence (51) is true for all α ≥ 1.
Utilizing (17) in (51), we obtain

∞∑
n=0

B4γ

(
4 · 32α+2n+ 32α+2

)
qn ≡ 4(P (q3)− 3qE3

9)
2 (mod 16). (61)

Extracting the terms involving q3n+2 from (61), we obtain
∞∑
n=0

B4γ

(
4 · 32α+3n+ 32α+2+2

)
qn ≡ 4E6

3 (mod 16). (62)
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Extracting the terms involving q3n from (62), we obtain

∞∑
n=0

B4γ

(
4 · 32(α+1)+2n+ 32(α+1)+2

)
qn ≡ 4E6

1 (mod 16). (63)

which is α + 1 case of (51). Thus, by the principle of mathematical induction, we complete the
proof of (51). Comparing (57) and (60) we can simply arrive at (52). Suppose that congruence
(53) and (54) is true for all α ≥ 1. Extracting the terms involving q3n+1 and q3n+2 from (62),
we can conclude that (53) and (54) is also true for α + 1. Thus, by the principle of mathematical
induction, we complete the proof of (53) and (54).

Remark 3.6. Setting γ = 1 in Theorem 3.5, we arrive at the congruence of Theorem 4.3 due to
Naika and Shivasankar, [14].

Theorem 3.7. Let p ≥ 3 be a prime and 1 ≤ j ≤ p− 1. Then for all integers α, n ≥ 0, we have

∞∑
n=0

B4γ

(
p2α(8n+ 1)

)
qn ≡ 4E3

1 (mod 8), (64)

B4γ

(
p2α+1(8(pn+ j) + p)

)
≡ 0 (mod 8). (65)

Proof. From (55), we note that

∞∑
n=0

B4γ(2n+ 1)qn ≡ 4
E32

4

E26
2 E

8
8

(mod 8). (66)

Employing (21) in (66), we obtain

∞∑
n=0

B4γ(2n+ 1)qn ≡ 4E3
4 (mod 8). (67)

Extracting the terms involving q4n from (67), we obtain

∞∑
n=0

B4γ(8n+ 1)qn ≡ 4E3
1 (mod 8). (68)

Congruence (68) is the α = 0 case of (64). Suppose that congruence (64) is true for all integer
α ≥ 0. Employing (19) in (64), we obtain

∞∑
n=0

B4γ

(
p2α(8n+ 1)

)
qn ≡ 4

{ (p−1)∑
k=0

k ̸=(p−1)/2

(−1)kqk(k+1))/2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·(pn+2k+1)/2

+ p(−1)(p−1)/2q(p
2−1)/8E3

p2

}
(mod 8). (69)

Extracting the term involving qpn+(p2−1)/8 from both sides of (69), dividing throughout by q(p2−1)/8

and then replacing qp by q, we obtain

∞∑
n=0

B4γ

(
p2α+1(8n+ p)

)
qn ≡ 4E3

p (mod 8). (70)
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Extracting the terms involving qpn from (70) and replacing qp by q, we obtain
∞∑
n=0

B4γ

(
p2(α+1)(8n+ 1)

)
qn ≡ 4E3

1 (mod 8), (71)

which is the α + 1 case of (64). Thus, by the principle of mathematical induction, we arrive at
(64). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1, from both sides of
(70), we complete the proof of (65).

3.3 Congruences for B6γ(n)

Theorem 3.8. Let p ≥ 3 be a prime with
(
−4

p

)
= −1 and 1 ≤ j ≤ (p − 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

B6γ(4n+ 3) ≡ 0 (mod 16), (72)
∞∑
n=0

B6γ

(
p2α(8n+ 5)

)
qn ≡ E3

1E
3
4 (mod 16), (73)

B6γ

(
p2α+1(8(pn+ j) + 5p)

)
≡ 0 (mod 16). (74)

Proof. Setting k = 6γ in (7), we obtain
∞∑
n=0

B6γ(n)q
n =

E2
2E

4
6γ

E4
1E

2
12γ

. (75)

Using (13) in (75), extracting the terms involving q2n+1 from (76), we obtain
∞∑
n=0

B6γ(n)q
n =

E2
2E

4
6γ

E2
12γ

(
E14

4

E14
2 E

4
8

+ 4q
E2

4E
4
8

E10
2

)
. (76)

Extracting the terms involving q2n+1 from (76), we obtain
∞∑
n=0

B6γ(2n+ 1)qn = 4
E4

3γE
2
2E

4
4

E2
6γE

8
1

. (77)

Using (13) in (77), we obtain
∞∑
n=0

B6γ(2n+ 1)qn ≡ 4
E4

3γE
32
4

E2
6γE

26
2 E

8
8

(mod 16). (78)

Extracting the terms involving q2n+1 from (78), we complete the proof of (72). Using (22) in (78)
and then extracting the terms involving q2n, we obtain

∞∑
n=0

B6γ(4n+ 1)qn ≡ 4
E32

2

E26
1 E

8
4

(mod 16). (79)

Employing (22) in (79), we obtain
∞∑
n=0

B6γ(4n+ 1)qn ≡ 4E6
1 (mod 16). (80)
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Employing (14) in (80), we obtain
∞∑
n=0

B6γ(4n+ 1)qn ≡ 4

(
E8

4E8

E2E2
16

− 2q
E10

4 E
2
16

E2E5
8

)
(mod 16). (81)

Extracting the terms involving q2n+1 from (81), we obtain
∞∑
n=0

B6γ(8n+ 5)qn ≡ 8
E10

2 E
2
8

E1E5
4

(mod 16). (82)

Employing (21) in (82), we obtain
∞∑
n=0

B6γ(8n+ 5)qn ≡ 8E3
1E

3
4 (mod 16). (83)

Congruence (83) is the α = 0 case of (73). Suppose that congruence (73) is true for all α ≥ 0.
Utilizing (19) in (73), we obtain

∞∑
n=0

B6γ

(
p2α(8n+5)

)
qn ≡ 8

{ (p−1)∑
k=0

k ̸=(p−1)/2

(−1)kqk(k+1))/2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·(pn+2k+1)/2

+ p(−1)(p−1)/2q(p
2−1)/8E3

p2

}
×
{ (p−1)∑

m=0
m ̸=(p−1)/2

(−1)mq4m(m+1))/2

∞∑
n=0

(−1)n(2pn+ 2m+ 1)q4pn·(pn+2m+1)/2

+ p(−1)(p−1)/2q4(p
2−1)/8E3

4p2

}
(mod 16). (84)

Consider the congruence

(k2 + k)

2
+

4(m2 +m)

2
≡ 5(p2 − 1)

8
(mod p),

which is equal to
(2k + 1)2 + 4(2m+ 1)2 ≡ 0 (mod p).

For
(
−4

p

)
= −1, the above congruence has only solution m = k =

±p− 1

6
. Therefore,

extracting the terms involving qpn+5(p2−1)/8 from both sides of (84), dividing throughout by
q5(p

2−1)/8 and then replacing qp by q, we obtain
∞∑
n=0

B6γ

(
p2α+1(8n+ 5p)

)
qn ≡ 8E3

pE
3
4p (mod 16). (85)

Extracting the terms involving qpn from (85) and replacing qp by q, we obtain
∞∑
n=0

B6γ

(
p2α+2(8n+ 5)

)
qn ≡ 8E3

1E
3
4 (mod 16), (86)

which is the α + 1 case of (73). Thus, by the principle of mathematical induction, we complete
the proof of (73). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1, from
both sides of (85), we complete the proof of (74).
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Theorem 3.9. Let p ≥ 3 be a prime with
(
−3

p

)
= −1 and 1 ≤ j ≤ (p − 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

∞∑
n=0

B6γ

(
p2α(8n+ 1)

)
qn ≡ 4E3

1 (mod 8), (87)

B6γ

(
p2α+1(8(pn+ j) + p

)
≡ 0 (mod 8). (88)

Proof. Using (21) in (80) and extracting the terms involving q2n, we obtain

∞∑
n=0

B6γ(8n+ 1)qn ≡ 4E3
1 (mod 8). (89)

Congruence (89) is the α = 0 case of (87). Suppose that congruence (87) is true for all integer
α ≥ 0. Employing (19) in (87), we obtain

∑
n

B6γ

(
p2α(8n+ 1)

)
qn ≡ 4

{ (p−1)∑
k=0

k ̸=(p−1)/2

(−1)kqk(k+1))/2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·(pn+2k+1)/2

+ p(−1)(p−1)/2q(p
2−1)/8E3

p2

}
(mod 8). (90)

Extracting the term involving qpn+(p2−1)/8 from both sides of (90), dividing throughout by q(p2−1)/8

and then replacing qp by q, we obtain∑
n

B6γ

(
p2α+1(8n+ p)

)
qn ≡ 4E3

p (mod 8). (91)

Extracting the terms involving qpn from (91) and replacing qp by q, we obtain∑
n

B6γ

(
p2(α+1)(8n+ 1)

)
qn ≡ 4E3

1 (mod 8), (92)

which is the α + 1 case of (87). Thus, by the principle of mathematical induction, we arrive at
(87). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1, from both sides of
(91), we complete the proof of (88).

4 Conclusion

In this paper, we generalize some of the theorems proved by Naika and Shivasankar in 2017, [14].
Many authors have proved some congruences for B3, B4 and B6. We have further extended these
congruences for B3γ , B4γ and B6γ , where γ is any positive integer.
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