A. D. Godase
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 1, Pages 100–110
DOI: 10.7546/nntdm.2024.30.1.100-110
Full paper (PDF, 218 Kb)
Details
Authors and affiliations
A. D. Godase
![]()
Department of Mathematics, V. P. College Vaijapur
Aurangabad (MS), India
Abstract
The aim of this paper is to establish some novel identities for hyperbolic k-Fibonacci octonions and k-Lucas octonions. We prove these properties using the identities of k-Fibonacci and k-Lucas numbers, which we determined previously.
Keywords
- Fibonacci number
- Lucas number
- k-Fibonacci number
- k-Lucas number
2020 Mathematics Subject Classification
- Primary: 11B39
- Secondary: 11B37, 11B52
References
- Bolat, C., & Köse, H. (2010). On the properties of k-Fibonacci numbers. International Journal of Contemporary Mathematical Sciences, 5(22), 1097–1105.
- Cariow, A., Cariowa, G., & Knapinski, J. (2015). A unified approach for
developing rationalized algorithms for hypercomplex number multiplication. Przeglad Elektrotechniczny, 91(2), 36–39. - Cariow, A., Cariowa, G., & Knapinski, J. (2015). Derivation of a low multiplicative complexity algorithm for multiplying hyperbolic octonions. Preprint. ArXiv:1502.06250.
- Carmody, K. (1988). Circular and hyperbolic quaternions, octonions, and sedenions. Applied Mathematics and Computation, 28(1), 27–47.
- Cayley, A. (1845). On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(172), 208–211.
- Demir, S. (2013). Hyperbolic octonion formulation of gravitational field equations. International Journal of Theoretical Physics, 52(1), 105–116.
- Demir, S., & Tanis¸li, M. (2016). Hyperbolic octonion formulation of the fluid Maxwell equations. Journal of the Korean Physical Society, 68(5), 616–623.
- Demir, S., & Zeren, E. (2018). Multifluid plasma equations in terms of hyperbolic octonions. International Journal of Geometric Methods in Modern Physics, 15(4), Article 1850053.
- Godase, A. D. (2019). Properties of k-Fibonacci and k-Lucas octonions. Indian Journal of Pure and Applied Mathematics, 50(4), 979–998.
- Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Godase, A. D. (2021). Study of generalized Fibonacci sequences. Doctoral dissertation. Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, India.
- Godase, A. D., (2021). Hyperbolic k-Fibonacci and k-Lucas quaternions. Mathematics Student, 90(1–2), 103–116.
- Hamilton, W. (1844). On a new species of imaginary quantities connected with a theory of quaternions. Proceedings of the Royal Irish Academy, 2, 424–434.
- Hamilton, W. (1866). Elements of Quaternions. Longmans, Green, & Company, UK.
- Horadam, A. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly, 70(3), 289–291.
- Kecilioglu, O., & Akkus, I. (2015). The Fibonacci octonions. Advances in Applied Clifford Algebras, 25(1), 151–158.
- Macfarlane, A. D. (1900). Hyperbolic quaternions. Proceedings of the Royal Society of Edinburgh, 23, 169–180.
- Özkan, E., & Uysal, M. (2022). On hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Notes on Number Theory and Discrete Mathematics, 28(2), 318–330.
- Polatlı, E., & Kesim, S. (2015). A note on Catalan’s identity for the k-Fibonacci quaternions. Journal of Integer Sequences, 18(8), Article 15.8.2.
- Polatlı, E., Kizilates¸, C., & Kesim, S. (2016). On split k-Fibonacci and k-Lucas quaternions. Advances In Applied Clifford Algebras, 26, 353-362.
- Ramirez, J. L. (2015). Some combinatorial properties of the k-Fibonacci and the k-Lucas quaternions. Analele Universitatii Ovidius Constanta-Seria Matematica, 23(2), 201–212.
- Tanıs¸lı, M., Kansu, M. E., & Demir, S. (2012). A new approach to Lorentz invariance in electromagnetism with hyperbolic octonions. The European Physical Journal Plus, 127, Article 69.
- Uysal, M., Kumari, M., Kuloglu, B., Prasad, K., & Özkan, E. (2025). On the hyperbolic k-Mersenne and k-Mersenne–Lucas octonions. Kragujevac Journal of Mathematics, 49(5), 765–779.
Manuscript history
- Received: 21 October 2023
- Revised: 15 December 2024
- Accepted: 26 February 2024
- Online First: 1 March 2024
Copyright information
Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Godase, A. D. (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Özkan, E., & Uysal, M. (2022). On hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Notes on Number Theory and Discrete Mathematics, 28(2), 318–330.
Cite this paper
Godase, A. D. (2024). Some new properties of hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 30(1), 100-110, DOI: 10.7546/nntdm.2024.30.1.100-110.
