Neşe Ömür, Sibel Koparal, Laid Elkhiri
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 4, Pages 695–704
DOI: 10.7546/nntdm.2023.29.4.695-704
Full paper (PDF, 218 Kb)
Details
Authors and affiliations
Neşe Ömür
Department of Mathematics, University of Kocaeli
41380 Izmit, Kocaeli, Turkey
Sibel Koparal
Department of Mathematics, University of Bursa Uludağ
16059 Nilufer, Bursa, Turkey
Laid Elkhiri
Faculty of Material Sciences, University of Tiaret
Algeria
Abstract
In this paper, we define the generalized hyperharmonic numbers of order , and get some identities involving these numbers by using Euler’s transform.
Keywords
- Euler’s transform
- Generalized hyperharmonic numbers of order r
2020 Mathematics Subject Classification
- 05A15
- 11S80
- 11B68
References
- Abel, N. H. (1826). Untersuchungen uber die Reihe . Journal fur die reine und angewandte Mathematik, 1, 311–339.
- Batır, N. (2020). Combinatorial identities involving harmonic numbers. Integers, #A25, 20(2).
- Batır, N., & Sofo, A. (2021). A unified treatment of certain classes of combinatorial identities. Journal of Integer Sequences, 24, Article 21.3.2.
- Boyadzhiev, K. N. (2009). Harmonic number identities via Euler’s transform. Journal of Integer Sequences, 12, Article 09.6.1.
- Choi, J., & Srivastava, H. M. (2011). Some summation formulas involving harmonic numbers and generalized harmonic numbers. Mathematical and Computer Modelling, 54, 2220–2234.
- Frontczak, R. (2020). Harmonic sums via Euler’s Transform: Complementing the approach of Boyadzhiev. Journal of Integer Sequences, 23, Article 20.3.2.
- Frontczak, R. (2021). Binomial sums with skew-harmonic numbers. Palestine Journal of Mathematics, 10(2), 756–763.
- Genčev, M. (2011). Binomial sums involving harmonic numbers. Mathematica Slovaca, 61(2), 215–226.
- Guo, D., & Chu, W. (2021). Summation formulae involving multiple harmonic numbers. Applicable Analysis and Discrete Mathematics, 15(1), 201–212.
- Jin, H.-T., & Du, D. K. (2015). Abel’s lemma and identities on harmonic numbers. Integers, 15, #A22.
- Mestrovic, R. (2015). Five curious congruences modulo . Mathematica Slovaca, 65(3), 451–462.
- Ömür, N., & Bilgin, G. (2018). Some applications of the generalized hyperharmonic numbers of order r, . Advances and Applications in Mathematical Sciences, 17(9), 617–627.
- Ömür, N., & Koparal, S. (2018). On the matrices with the generalized hyperharmonic numbers of order r. Asian-European Journal of Mathematics, 11(3), 1850045.
- Spieß, J. (1990). Some identities involving harmonic numbers. Mathematics of
Computation, 55(192), 839–863. - Thapa, G. B., López Bonilla, J., & López-Vázquez, R. (2017). A note on some applications of Boyadzhiev’s formula. Journal of the Institute of Engineering, 31(1), 175–177.
Manuscript history
- Received: 6 February 2022
- Revised: 19 September 2023
- Accepted: 30 October 2023
- Online First: 14 November 2023
Copyright information
Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Ömür, N., Koparal, S., & Elkhiri, L. (2023). On sums with generalized harmonic numbers via Euler’s transform. Notes on Number Theory and Discrete Mathematics, 29(4), 695-704, DOI: 10.7546/nntdm.2023.29.4.695-704.