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1 Introduction

The harmonic numbers, denoted by Hn, are defined by

H0 = 0, Hn =
n∑

k=1

1

k
for n ≥ 1,

and their generating function is
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∞∑
n=0

Hnt
n =

− ln(1− t)

1− t
.

From [14], it is known that
n∑

k=0

Hk

n+ 1− k
= H2

n+1 −Hn+1,2. (1.1)

Harmonic numbers are interesting research objects. Recently, these numbers have been
generalized by several authors. There are a lot of works involving harmonic numbers and
generalizations of them (see [5, 9, 12, 13]).

Guo and Cha [9] defined generalized harmonic numbers by

H0(σ) = 0 and Hn(σ) =
n∑

k=1

σk

k
for n ∈ N,

where σ is an appropriate parameter, and their generating function is
∞∑
n=0

Hn(σ)t
n =

− ln (1− σt)

1− t
. (1.2)

When σ = 1/α for α ∈ R+, Hn(1/α) :=
∑n

k=1
1

kαk are called the generalized harmonic numbers
by Genčev [8].

The Daehee numbers of order r, showed by Dr
n, are defined by the generating functions to be

∞∑
n=0

Dr
n

tn

n!
=

(
ln (1 + t)

t

)r

.

For r = 1, D1
n = Dn are called Daehee numbers. It is clear that

D0 = 1, D1 = −1

2
, · · · , Dn = (−1)n

n!

n+ 1
. (1.3)

By using Euler’s transform for power series, some authors work various binomial identities
with harmonic numbers (see [2,4,6,7,10,15]). For example, in [4], the author proved the identity
as follows: for n ∈ N and λ, µ ∈ C,

n∑
k=1

(
n

k

)
µkλn−kHk = (λ+ µ)nHn −

(
λ (λ+ µ)n−1 +

λ2

2
(λ+ µ)n−2 + · · ·+ λn

n

)
.

This formula allows to derive the following identity
n∑

k=1

2k−1Hn−k = 2nHn(2)−Hn.

The author gave the following expansion in a neighborhood of zero
∞∑
n=1

βnHn

(
σ

β

)
tn =

− ln(1− σt)

1− βt
, (1.4)

where σ, β are appropriate parameters. When β = 1 in (1.4), (1.2) is obtained.

696



Also there is the generating function given by
∞∑
n=1

(
β

n−1∑
k=0

(σ + β)n−k−1σkHk + σnHn

)
tn =

− ln(1− σt)

1− (σ + β)t
.

For a, b ∈ Z+, it is known that
∞∑
n=0

(
a+ n− b

n− b

)
tn =

tb

(1− t)a+1 . (1.5)

In [7], Frontczak proved a new expression for binomial sums with harmonic numbers. His
derivation was based on elementary analysis of the Euler’s transform of these sums. The author
discovered some known identities involving skew-harmonic, and Fibonacci and Lucas numbers.
For example, for positive integer n,

n∑
k=0

(
n

k

)
µkλn−kH−

k = (µ− λ)nH−
n + λnHn + µ

n−1∑
k=0

(µ+ λ)kλn−k−1Hn−k−1

+2λ
n−1∑
k=0

(µ+ λ)k(µ− λ)n−k−1H−
n−k−1,

where H−
k =

∑n
k=1

(−1)k+1

k
with H−

0 = 0 are skew-harmonic numbers.
In [3], Batır and Sofo proved some general combinatorics formulas. Applying these formulas,

they obtained some new identities and reproved some known identities included in the works of
Frontczak and Boyadzhiev. For example, for n ∈ N and λ ∈ C,

n∑
k=0

(
n

k

)
λkH2

k = (1 + λ)n

(
H2

n −
n∑

k=1

Hn − 2Hk +Hn−k

k(1 + λ)k
− 2

n∑
k=1

1

k2(1 + λ)k

)
.

Abel’s partial summation formula asserts that for every pair of families (ak)
n
k=1 and (bk)

n
k=1 of

complex numbers, there is the relation (see [1, 10])
n∑

k=1

akbk =
n−1∑
k=1

(
(ak − ak+1)

k∑
j=1

bj

)
+ an

n∑
j=1

bj. (1.6)

2 Main results

In this section, we will define a new generalization for the generalized harmonic numbers Hn (σ)

and then give some identities with these numbers by using Euler’s transform.

Definition 2.1. For the generalized harmonic numbers Hn (σ) , the generalized hyperharmonic
numbers of order r, Hr

n (σ) , are defined by

Hr
n (σ) =


∑n

k=1 H
r−1
k (σ) , if n, r ≥ 1,

σn

n
, if r = 0 and n > 0,

0, if r < 0 or n ≤ 0,

where σ is an appropriate parameter.

Specifically, when σ = 1/α, α ∈ R+, for the generalized harmonic numbers Hn(1/α), the
generalized hyperharmonic numbers of order r are Hr

n(1/α) [12].
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The proof of Theorem 2.1 is similar to the proof of Theorem 1 in [12].

Theorem 2.1. For any positive integers n and r, we have

Hr
n (σ) =

n∑
k=1

(
n+ r − k − 1

r − 1

)
σk

k
.

Theorem 2.2. For any positive integer r, we have
∞∑
n=1

Hr
n (σ) t

n =
− ln (1− σt)

(1− t)r
.

Proof. Consider that

− ln (1− σt)

(1− t)r
= −

(
∞∑
n=1

σn

n
tn

)(
∞∑
n=0

(
r − 1 + n

r − 1

)
tn

)

=
∞∑
n=1

n∑
k=1

(
n+ r − k − 1

r − 1

)
σk

k
tn =

∞∑
n=1

Hr
n (σ) t

n,

as claimed.

Lemma 2.1. For any positive integer r ≥ 2, we have
∞∑
n=0

n∑
k=0

βn

(
r − 2 + k

k

)
Hn−k (σ/β) t

n =
− ln (1− σt)

(1− βt)r
,

where σ, β are appropriate parameters.

Proof. By (1.4) and (1.5), using Cauchy’s product rule for power series, we get

− ln (1− σt)

(1− βt)r
=

1

(1− βt)r−1 × − ln (1− σt)

1− βt

=
∞∑
n=0

βn

(
r − 2 + n

n

)
tn ×

∞∑
n=0

βnHn (σ/β) t
n

=
∞∑
n=0

n∑
k=0

βn

(
r − 2 + k

k

)
Hn−k (σ/β) t

n,

as claimed.

For example, putting β = 1 in Lemma 2.1, the following expression is valid:

Hr
n (σ) =

n∑
k=0

(
r − 2 + k

k

)
Hn−k (σ) .

Lemma 2.2. [4] Let a function analytical on the unit disk be f(t) =
∑∞

n=0 fnt
n. The Euler’s

transform can be given as

1

(1− λt)m
f

(
µt

1− λt

)
=

∞∑
n=0

n∑
k=0

(
m− 1 + n

n− k

)
µkλn−kfkt

n,

where λ, µ are appropriate parameters.
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Theorem 2.3. Let n be any positive integer, we have
n∑

k=0

(
n

k

)(µ
λ

)k
Hk (σ) =

(
λ+ µ

λ

)n(
Hn

(
λ+ σµ

λ+ µ

)
−Hn

(
λ

λ+ µ

))
(2.1)

and for r ≥ 2,

n∑
k=0

(
n+ r − 1

n− k

)(µ
λ

)k
Hr

k (σ) (2.2)

=
n∑

k=0

n−k∑
i=0

(
k + r − 2

k

)(
n− k

i

)(µ
λ

)i(λ+ µ

λ

)k

Hi (σ) ,

where λ and µ are as above.

Proof. For f(t) = − ln (1− σt)

(1− t)
r , by applying Lemma 2.2, the right-hand side becomes

1

(1− λt)r
f

(
µt

1− λt

)
=

1

(1− λt)r
− ln

(
1− σ µt

1−λt

)(
1− µt

1−λt

)r
= − ln (1− (λ+ σµ) t)− ln (1− λt)

(1− (λ+ µ) t)r

= − ln (1− (λ+ σµ) t)

(1− (λ+ µ) t)r
− − ln (1− λt)

(1− (λ+ µ) t)r
.

Lemma 2.1 yields that

1

(1− λt)r
f

(
µt

1− λt

)
=

∞∑
n=0

n∑
k=0

(λ+ µ)n
(
k + r − 2

k

)
Hn−k

(
λ+ σµ

λ+ µ

)
tn

−
∞∑
n=0

n∑
k=0

(λ+ µ)n
(
k + r − 2

k

)
Hn−k

(
λ

λ+ µ

)
tn

=
∞∑
n=0

n∑
k=0

(λ+ µ)n
(
k + r − 2

k

)(
Hn−k

(
λ+ σµ

λ+ µ

)
−Hn−k

(
λ

λ+ µ

))
tn. (2.3)

At the same time, by using Euler’s transform, the left hand side becomes
∞∑
n=0

n∑
k=0

(
n+ r − 1

n− k

)
µkλn−kHr

k (σ) t
n. (2.4)

Thus, by using (2.1), comparing coefficients in (2.3) and (2.4), the proof of (2.2) is obtained.
Similarly, taking f(t) =

− ln (1− σt)

1− t
and using Lemma 2.2 and (1.4), we have the proof

of (2.1).

For example, setting λ = µ = σ = 1 in Theorem 2.3, we have the well-known identities
n∑

k=1

(
n

k

)
Hk = 2n (Hn −Hn (1/2)) ,

and for any integer r ≥ 2,

n∑
k=1

(
n+ r − 1

n− k

)
Hr

k =
n∑

k=0

n−k∑
i=1

(
k + r − 2

k

)(
n− k

i

)
2kHi.
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Corollary 2.1. For any positive integer n, we have
n∑

k=0

(
n

k

)
(−1)k 2n−kHk (σ) = Hn (2− σ)−Hn (2) ,

and for any integer r ≥ 2,

n∑
k=0

(
n+ r − 1

n− k

)
(−1)k 2−kHr

k (σ) =
n∑

k=0

n−k∑
i=0

(
k + r − 2

k

)(
n− k

i

)
(−1)i 2−k−iHi (σ) .

Proof. Putting λ = −2µ in Theorem 2.3, the desired results are given.

Theorem 2.4. For any positive integers n and m, we have
n∑

k=1

(−1)k
(
n+m

k +m

)
Hr

k (σ) = Hm−r+1
n (1− σ)−Hm−r+1

n

=
n−1∑
k=1

(−1)n−k

(
2r −m− 1

n− k − 1

)
(Hr

k (1− σ)−Hr
k)

=
n∑

k=1

(−1)k

n− k + 1

(
r −m− 1

k − 1

)(
1− (1− σ)n−k+1

)
.

Proof. For the proof, we take

f (t) = − ln (1− σt)

(1− t)r

and by applying Lemma 2.2, the left-hand side becomes

1

(1 + t)m+1f

(
t

1 + t

)
= − 1

(1 + t)m+1

ln
(
1− σ t

1+t

)(
1− t

1+t

)r
= − 1

(1 + t)m−r+1 (ln(1 + t(1− σ))− ln(1 + t))

=
∞∑
n=0

(−1)n
(
Hm−r+1

n (1− σ)−Hm−r+1
n

)
tn, (2.5)

1

(1 + t)m+1f

(
t

1 + t

)
= − 1

(1 + t)m+1

ln
(
1− σ t

1+t

)(
1− t

1+t

)r
= − (1 + t)r−m−1 t

(
(1− σ)

ln(1 + t(1− σ))

(1− σ) t
− ln(1 + t)

t

)
= −

∞∑
n=1

(
r −m− 1

n− 1

)
tn ×

∞∑
n=0

Dn

n!

(
(1− σ)n+1 − 1

)
tn

= −
∞∑
n=1

n∑
k=1

(
r −m− 1

k − 1

)
Dn−k

(n− k)!

(
(1− σ)n−k+1 − 1

)
tn, (2.6)

and

1

(1 + t)m+1f

(
t

1 + t

)
= − 1

(1 + t)m+1

ln
(
1− σ t

1+t

)(
1− t

1+t

)r
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= − (1 + t)2r−m−1 t

(
ln(1 + t(1− σ))

(1 + t)r
− ln(1 + t)

(1 + t)r

)
=

∞∑
n=1

(
2r −m− 1

n− 1

)
tn ×

∞∑
n=0

(−1)n (Hr
n (1− σ)−Hr

n) t
n

=
∞∑
n=1

n−1∑
k=0

(−1)k
(
2r −m− 1

n− k − 1

)
(Hr

k (1− σ)−Hr
k) t

n, (2.7)

and finally, setting λ = −1 and µ = 1 in Lemma 2.2, the right hand side becomes

1

(1 + t)m+1f

(
t

1 + t

)
=

∞∑
n=0

n∑
k=0

(
n+m

k +m

)
(−1)n−k Hr

k (σ) t
n. (2.8)

Hence, by (1.3), from (2.5)–(2.8), comparing the coefficients of tn completes the proof.

Corollary 2.2. For any positive integers n and r, we have

n∑
k=1

k∑
i=1

(−1)n+k+i

(
2r − 1

n− k

)(
k + 2r − 1

i+ 2r − 1

)
Hr

i (σ) =
n∑

k=1

(−1)k
(
r − 1

k − 1

)
1− (1− σ)n−k+1

n− k + 1
.

Lemma 2.3. For any nonnegative integer n, we have

n∑
k=0

HkHn−k = (n+ 1)(2− 2Hn+1 +H2
n+1 −Hn+1,2).

Proof. Putting ak = Hn−k and bk = Hk in (1.6), we write

n∑
k=0

HkHn−k =
n−1∑
k=1

(
(k + 1)Hk

n− k
− k

n− k

)
=

n−1∑
k=1

(
(k − n+ n+ 1)Hk

n− k
+

n− k − n

n− k

)

=
n−1∑
k=1

(
−Hk +

(n+ 1)Hk

n− k
+ 1− n

n− k

)

= n− 1−
n−1∑
k=1

Hk + (n+ 1)
n−1∑
k=1

Hk

n− k
− n

n−1∑
k=1

1

n− k

= 2n− 2− 2nHn−1 + (n+ 1)
n−1∑
k=1

Hk

n− k
.

Thus, by using
n−1∑
j=1

Hj

n−j
= H2

n+1 −Hn+1,2 − 2
n+1

Hn from (1.1), we have the proof.

Theorem 2.5. For any nonnegative integer n, we have

n∑
k=0

(
n+ 1

k + 1

)
Ak = 2n

(
An +

n∑
k=0

Hn−k(1/2) (Hk(1/2)− 2Hk)

)
,

where An = (n+ 1)
(
2− 2Hn+1 +H2

n+1 −Hn+1,2

)
.
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Proof. Using Cauchy’s product rule for power series, we have(
ln(1− t)

1− t

)2

=

(
∞∑
n=0

Hnt
n

)2

=
∞∑
n=0

(
n∑

k=0

HkHn−k

)
tn.

For f(t) =
(

ln(1−t)
1−t

)2
, by applying Lemma 2.2, we write

1

(1− t)2
f

(
t

1− t

)
=

(
ln(1− 2t)− ln(1− t)

1− 2t

)2

=

(
ln(1− 2t)

1− 2t

)2

+

(
ln(1− t)

1− 2t

)2

− 2

(
ln(1− 2t)

1− 2t

)(
ln(1− t)

1− 2t

)
=

(
∞∑
n=0

2nHnt
n

)2

+

(
∞∑
n=0

2nHn(1/2)t
n

)2

− 2

(
∞∑
n=0

2nHnt
n

)(
∞∑
n=0

2nHn(1/2)t
n

)

=
∞∑
n=0

2n
n∑

k=0

(Hn−kHk +Hn−k(1/2)Hk(1/2)− 2HkHn−k(1/2)) t
n, (2.9)

and

1

(1− t)2
f

(
t

1− t

)
=

∞∑
n=0

n∑
k=0

(
n+ 1

k + 1

)
Akt

n. (2.10)

Comparing the coefficients of (2.9) and (2.10), the result is given.

Corollary 2.3. For any odd prime number p, we have

p−1∑
k=1

Hp−1−k(1/2) (Hk(1/2)− 2Hk) ≡ 21−pp
(
2− q2p (2)

)
− 2p (mod p2),

where qp (2) are the Fermat quotients with base 2.

Proof. From the congruence
(
p−1
k

)
≡ (−1)k (mod p) for k = 0, 1, . . . , p− 1, we have

p

p−1∑
k=0

(
p− 1

k

)(
2− 2Hk+1 +H2

k+1 −Hk+1,2

)
≡ p

p−1∑
k=0

(−1)k
(
2− 2Hk+1 +H2

k+1 −Hk+1,2

)
= p

(
2− 2Hp +H2

p −Hp,2

)
− p

p−1∑
k=1

(−1)k
(
2− 2Hk +H2

k −Hk,2

)
= 2p− 2− 2pHp−1 + pH2

p−1 + 2Hp−1 − pHp−1,2 − 2p

p−1∑
k=1

(−1)k

+2p

p−1∑
k=1

(−1)k Hk − p

p−1∑
k=1

(−1)k H2
k + p

p−1∑
k=1

(−1)k Hk,2 (mod p2),
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and with the help of the congruences Hp−1 ≡ 0 (mod p2) and Hp−1,2 ≡ 0 (mod p),

p

p−1∑
k=0

(
p− 1

k

)(
2− 2Hk+1 +H2

k+1 −Hk+1,2

)
≡ 2p− 2 + 2p

p−1∑
k=1

(−1)k Hk − p

(
p−1∑
k=1

(−1)k H2
k −

p−1∑
k=1

(−1)k Hk,2

)
(mod p2).

By
p−1∑
k=1

(−1)k Hk ≡ qp (2) (mod p) and
p−1∑
k=1

(−1)k (H2
k −Hk,2) ≡ q2p (2) (mod p) [11], we

write

p

p−1∑
k=0

(
p− 1

k

)(
2− 2Hk+1 +H2

k+1 −Hk+1,2

)
(2.11)

≡ 2p− 2− 2pqp (2)− pq2p (2) (mod p2).

When n = p− 1 in Theorem 2.5, from (2.11), we have

2p− 2− 2pqp (2)− pq2p (2)

≡ 2p−1

(
2p− 2pHp + pH2

p − pHp,2 +

p−1∑
k=0

Hp−1−k(1/2) (Hk(1/2)− 2Hk)

)
(mod p2).

From here, using the congruences Hp−1 ≡ 0 (mod p2) and Hp−1,2 ≡ 0 (mod p), and making
the necessary arrangements, the desired result is obtained.
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