**Burak Kurt**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 29, 2023, Number 3, Pages 486–494

DOI: 10.7546/nntdm.2023.29.3.486-494

**Full paper (PDF, 207 Kb)**

## Details

### Authors and affiliations

Burak Kurt

*Department of Mathematics and Science Education, Faculty of Education,
Akdeniz University, Antalya TR-07058, Turkey
*

### Abstract

The main aim of this paper is to introduce and investigate the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials by using monomiality principle and operational methods. We give explicit relations and some identities for the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials.

### Keywords

- Type 2-Bernoulli, Euler and Genocchi polynomials
- Degenerate Bernoulli, Euler and Genocchi polynomials
- Unified degenerate Apostol–Bernoulli, Euler and Genocchi polynomials
- Monomiality principle
- Multiplicative operators

### 2020 Mathematics Subject Classification

- 11B68
- 11B83
- 05A10
- 33B11

### References

- Belingeri, C., Dattoli, G., & Ricci P. E. (2007). The monomialty approach to multi-index polynomials in several variables.
*Georgian Mathematical Journal*, 14(1), 53–64. - Carlitz, L. (1956). A degenerate Staudt–Clausen theorem.
*Archiv der Mathematik (Basel)*, 7, 28–33. - Carlitz, L. (1979). Degenerate Stirling, Bernoulli and Eulerian numbers.
*Utilitas*

*Mathematica*, 15, 51–88. - Dattoli, G. (2001). Hermite–Bessel and Laguerre–Bessel functions: A byproduct of the monomiality principle.
*Advanced Special Functions and Applications*, 1, 147–164. - Dattoli, G., Migliorati, M., & Srivastava H. M. (2004). A class of Bessel summation formulas and associated operational methods.
*Fractional Calculus and Applied Analysis*, 7(2), 169–176. - Kim, D., Wongsason, P., & Kwon, J. (2022). Type 2-degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions.
*AIMS Mathematics*, 7(6), 9716–9730. - Kim, D. S., Kim, H. Y., Kim, D., & Kim, T. (2019). Identities of symmetry for the type 2 Bernoulli and Euler polynomials.
*Symmetry*, 11(5), Article ID 613. - Kim, H. K., & Lee, D. S. (2021). A new type of degenerate poly-type 2 Euler

polynomials and degenerate unipoly-type 2 Euler polynomials.*Proceedings of the Jangjeon Mathematical Society*, 24(2), 205–222. - Kim, T., Jang, L.-C., Kim, D. S., & Kim, H. Y. (2019). Some identities on the type 2 degenerate Bernoulli polynomials of the second kind.
*Symmetry*, 12(4), Article ID 510. - Kim, T., Kim, D. S., Dolgy, D. V., Lee S.-H., & Kwon J.-K. (2021). Some identities of the higher-order type 2-Bernoulli numbers and polynomials of the second kind.
*Computer Modeling in Engineering & Sciences*, 128(3), 1121–1132. - Khan, S., Nahid, T., & Riyasat, M. (2019). On degenerate Apostol-type polynomials and applications.
*Boletín de la Sociedad Matemática Mexicana*, 25(3), 509–528. - Khan, S., & Raza, N. (2013). General-Appell polynomials within the context of

monomiality principle.*International Journal of Analysis*, 2013, Article ID 328032. - Khan, S., Yasmin, G., & Riyasat, M. (2015). Certain result for the 2-variable Apostol type and related polynomials.
*Computers and Mathematics with Applications*, 69, 1367–1382. - Kurt, B. (2022). Unified degenerate Apostol-type Bernoulli, Euler, Genocchi and Fubini polynomials.
*Journal of Mathematics and Computer Science*, 25(3), 259–268. - Luo, Q.-M. (2009). The multiplication formulas for the Apostol–Bernoulli and

Apostol–Euler polynomials of higher order.*Integral Transforms and Special Functions*, 20(5), 377–391. - Luo, Q.-M., & Srivastava, H. M. (2005). Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials.
*Journal of Mathematical Analysis and Applications*, 308(1), 290–302. - Özarslan, M. A. (2011). Unified Apostol–Bernoulli, Euler and Genocchi polynomials.
*Computers & Mathematics with Applications*, 62(6), 2452–2462. - Ozden, H., Simsek, Y., & Srivastava. H. M. (2010). A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials.
*Computers & Mathematics with Applications*, 60(10), 2779–2787. - Ryoo, C. S. (2011). A note on the second kind Genocchi polynomials.
*Journal of*

*Computational Analysis and Applications*, 13(5), 986–992. - Srivastava, H. M. (2011). Some generalization and basic (or
*q*-) extension of the Bernoulli, Euler and Genocchi polynomials.*Applied Mathematics & Information*Sciences, 5(3), 390–444. - Srivastava, H. M., & Choi, J. (2012).
*Zeta and q-Zeta Functions and Associated Series and Integrals*. Elsevier, Amsterdam. - Srivastava, H. M., Kurt, B., & Kurt, V. (2019). Identities and relations involving the modified degenerate Hermite-based Apostol–Bernoulli and Apostol–Euler polynomials.
*RACSAM*, 113(2), 1299–1313.

### Manuscript history

- Received: 18 November 2022
- Revised: 5 June 2023
- Accepted: 19 June 2023
- Online First: 11 July 2023

### Copyright information

Ⓒ 2023 by the Author.

This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

## Related papers

## Cite this paper

Kurt, B. (2023). Explicit relations on the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi polynomials and numbers. *Notes on Number Theory and Discrete Mathematics*, 29(3), 486-494, DOI: 10.7546/nntdm.2023.29.3.486-494.