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1 Introduction

The degenerate versions of special polynomials and numbers initiated by Carlitz [2, 3] have
regained the attention of some mathematics by replacing the usual exponential function in the
generating function of special polynomials with the degenerate exponential functions. The study
of special polynomials provide many useful identities, their relations and representations
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associated with special numbers and polynomials. Belingeri et al. [1] and Dattoli et al. [4, 5]
considered monomiality principle for the Appell polynomials. Using monomiality principle and
operational methods. Khan et al. [11–13] introduced and investigated the 2-variable Apostol-type
polynomials and degenerate Apostol-type Bernoulli, Euler and Genocchi polynomials.

Luo [5], Srivastava [20] and Luo and Srivastava [16] introduced and investigated Apostol–
Bernoulli, Euler and Genocchi polynomials and gave some explicit relations and identities for
these polynomials. The type 2-degenerate Apostol–Bernoulli, Euler and Genocchi polynomials
have been introduced in [6–10, 12] and the coauthors of these articles gave recurrence relations
and identities and symmetry properties for these polynomials. Motivated by Khan et al. [11],
we define and investigate the type 2-unified degenerate Apostol–Bernoulli, Euler and Genocchi
polynomials.

We use the usual notations; N, Z, R and C for the set of natural integers, integers, real numbers
and complex numbers, respectively. Also, we let N0 := N ∪ {0} and Z− := {−1,−2,−3, · · · }.

We begin by introducing the following definition and notation (see also [1–22]). The classical
Bernoulli polynomials Bn(x), the classical Euler polynomials En(x) and the classical Genocchi
polynomials Gn(x) are defined by the following generating functions, respectively,

∞∑
n=0

Bn(x)
tn

n!
=

t

et − 1
ext, |t| < 2π;

∞∑
n=0

En(x)
tn

n!
=

2

et + 1
ext, |t| < π;

∞∑
n=0

Gn(x)
tn

n!
=

2t

et + 1
ext, |t| < π.

When x = 0, we get the Bernoulli numbers Bn(0) := Bn, the Euler numbers En(0) := En and
the Genocchi numbers Gn(0) := Gn, respectively.

Kim and Lee [8], Kim D. S. and three coauthors [7] and Kim and two coauthors [6] defined
the type 2-Bernoulli polynomials B∗

n (x) and the type 2-Euler polynomials E∗
n (x) as

∞∑
n=0

B∗
n (x)

tn

n!
=

t

et − e−t
ext, |t| < π (1)

and
∞∑
n=0

E∗
n (x)

tn

n!
=

2

et + e−t
ext, |t| < π

2
, (2)

respectively.
Ryoo [19] defined the type 2-Genocchi polynomials as

∞∑
n=0

G∗
n (x)

tn

n!
=

2t

et + e−t
ext, |t| < π

2
. (3)

We define the type 2-Apostol–Bernoulli polynomials B∗(α)
n,γ (x) of order α ∈ N, the type

2-Apostol-Euler polynomials E∗(α)
n,γ (x) of order α ∈ N and the type 2-Apostol–Genocchi

polynomials G∗(α)
n,γ (x) of order α ∈ N by the following generating functions as follows
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∞∑
n=0

B∗(α)
n,γ (x)

tn

n!
=

(
t

γet − e−t

)α

ext, (4)

(|t| < π when γ = 1; |t| < |log γ| when γ ̸= 1) ,
∞∑
n=0

E∗(α)
n,γ (x)

tn

n!
=

(
2

γet + e−t

)α

ext, (5)(
|t| < π

2
when γ = 1; |t| < |log (−γ)| when γ ̸= 1

)
and

∞∑
n=0

G∗(α)
n,γ (x)

tn

n!
=

(
2t

γet + e−t

)α

ext, (6)(
|t| < π

2
when γ = 1; |t| < |log (−γ)| when γ ̸= 1

)
.

Carlitz [2,3] defined the degenerate Bernoulli polynomials Bn (x | λ) and the degenerate Euler
polynomials En (x | λ) by means of the following generating functions, respectively

∞∑
n=0

Bn (x | λ) t
n

n!
=

t

(1 + λt)1/λ − 1
(1 + λt)x/λ (7)

and
∞∑
n=0

En (x | λ) t
n

n!
=

2

(1 + λt)1/λ + 1
(1 + λt)x/λ . (8)

The degenerate Genocchi polynomials Gn (x | λ) in [14] are defined as follows

∞∑
n=0

Gn (x | λ) t
n

n!
=

2t

(1 + λt)1/λ + 1
(1 + λt)x/λ , (9)

which in the special case when x = 0 in (7), (8) and (9) reduce to the generating function of the
degenerate Bernoulli numbers Bn (λ), the degenerate Euler numbers En (λ) and the degenerate
Genocchi numbers Gn (λ), respectively.

We define the degenerate type 2-Apostol Bernoulli polynomials B∗(α)
n,γ (x | λ) of order α ∈ N,

the degenerate type 2-Apostol Euler polynomials E∗(α)
n,γ (x | λ) of order α ∈ N and the degenerate

type 2-Apostol Genocchi polynomials G∗(α)
n,γ (x | λ) of order α ∈ N by means of the following

generating functions as follows

∞∑
n=0

B∗(α)
n,γ (x | λ) t

n

n!
=

(
t

γ (1 + λt)1/λ − (1 + λt)−1/λ

)α

(1 + λt)x/λ , (10)

∞∑
n=0

E∗(α)
n,γ (x | λ) t

n

n!
=

(
2

γ (1 + λt)1/λ + (1 + λt)−1/λ

)α

(1 + λt)x/λ (11)

and
∞∑
n=0

G∗(α)
n,γ (x | λ) t

n

n!
=

(
2t

γ (1 + λt)1/λ + (1 + λt)−1/λ

)α

(1 + λt)x/λ , (12)

respectively.
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We define the generalized degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi
polynomials R∗(α)

n,β (x;λ, k, a, b) of order α ∈ N by means of the following generating functions

∞∑
n=0

R∗(α)
n,β (x | λ; k, a, b) t

n

n!
=

(
21−ktk

βb (1 + λt)1/λ − ab (1 + λt)−1/λ

)α

(1 + λt)x/λ

(β ∈ C, α, k ∈ N, a, b ∈ R and 0 ̸= λ ∈ R) . (13)

For x = 0, we have the degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi numbers
R∗(α)

n,β (0 | λ; k, a, b) = R∗(α)
n,β (λ; k, a, b).

Corollary 1.1. Setting k = a = b = 1 and β = γ in (13), we get

R∗(α)
n,γ (x | λ; 1, 1, 1) = B∗(α)

n,γ (x | λ) .

Corollary 1.2. Choosing k = 0, b = −a = 1 and β = γ in (13), we get

R∗(α)
n,γ (x | λ; 0,−1, 1) = E∗(α)

n,γ (x | λ) .

Corollary 1.3. Letting k = −2a = b = 1 and 2β = γ in (13), we get

R∗(α)
n, γ

2

(
x | λ; 1,−1

2
, 1

)
= G∗(α)

n,γ (x | λ) .

From the Binomials theorems, we have

(1 + λt)x/λ =
∞∑
n=0

(x | λ)n
tn

n!
, (14)

where (x | λ)n = x (x− λ) (x− 2λ) · · · (x− (n− 1)λ), (x | λ)0 = 1.
The notation of quasi-monomiality was introduced and studied Dattoli [4], Dattoli et al. [5]

and Belingeri et al. [1], in details S. Khan et al. in [11–13].
According to monomiality principle, a polynomial set {Pn(x)}n∈N is “quasi-monomial”

provided there exist two operators M̂ and P̂ playing, respectively the role of multiplicative
and derivative operators for the given set of polynomials. These operator satisfy the following
identities for all n ∈ N.

M̂ {Pn(x)} = Pn+1(x), (15)

P̂ {Pn(x)} = nPn−1(x), (16)

M̂ P̂ {Pn(x)} = n Pn(x) (17)

and
Pn(x) = M̂ (n) {P0(x)} = M̂ {1} . (18)
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2 Main theorems and related relations

In this section, we consider the generalized type 2-unified degenerate Apostol–Bernoulli, Euler
and Genocchi polynomials. By applying the monomiality principle and operator methods, we
give an explicit relations and identities for these polynomials.

Theorem 2.1. The following relation holds true:

R∗(α)
n,β (x | λ; k, a, b) =

n∑
k=0

(
n

k

)
R∗(α)

n−k,β (λ; k, a, b) (x | λ)k . (19)

Proof. From (12) and (13), we find

∞∑
n=0

R∗(α)
n,β (x | λ; k, a, b) t

n

n!
=

(
21−ktk

βb (1 + λt)1/λ − ab (1 + λt)−1/λ

)α

(1 + λt)x/λ

=
∞∑

m=0

R∗(α)
m,β (λ; k, a, b)

tm

m!

∞∑
p=0

(x | λ)p
tp

p!
.

By using Cauchy product and comparing the coefficient of the both sides, we get (19).

Theorem 2.2. The following relation holds true:

R∗(α)
n,β (x+ y | λ; k, a, b) =

n∑
k=0

(
n

k

)
R∗(α)

n−k,β (x | λ; k, a, b) R∗(α)
k,β (y | λ; k, a, b) . (20)

The proof of this theorem is similar to (19). We omit it.

Theorem 2.3. The generalized degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi
polynomials R∗(α)

n,β (x | λ; k, a, b) are quasi-monimial with respect to the following multiplicative
and derivative operators

M̂ R∗(α)
n,β =

x

eλDx
+

αλk

eλDx − 1
−

αe−λDx
(
βbeDx + abe−Dx

)
βbeDx − abe−Dx

(21)

and

P̂ R∗(α)
n,β =

eλDx − 1

λ
. (22)

Proof. Differentiating the generating function (13) partially with respect to t

∞∑
n=0

R∗(α)
n+1,β (x | λ; k, a, b) t

n

n!
=

∞∑
n=0

{
x

1 + λt
+

αk

t
− α

βb (1 + λt)
1−λ
λ + ab (1 + λt)−

1−λ
λ

βb (1 + λt)
1
λ − ab (1 + λt)−

1
λ

}
× R∗(α)

n,β (x | λ; k, a, b) t
n

n!
. (23)

By using the following identities in (23)

t
{
(1 + λt)

x
λ

}
=

eλDx − 1

λ

{
(1 + λt)

x
λ

}
, (24)
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we get

∞∑
n=0

R∗(α)
n+1,β (x | λ; k, a, b) t

n

n!
=

∞∑
n=0

{
x

eλDx
+

αλk

eλDx − 1
−

αe−λDx
(
βbeDx + abe−Dx

)
βbeDx − abe−Dx

}
×R∗(α)

n,β (x | λ; k, a, b) t
n

n!
. (25)

Comparing the coefficients of both sides of equation (25), we have (21).
Using generating function (13) after some simplification, we have (22).

Theorem 2.4. The generalized degenerate type 2-unified Apostol–Bernoulli, Euler and Genocchi
polynomials R∗(α)

n,β (x | λ; k, a, b) satisfy the following differential equation{
αk +

x
(
eλDx − 1

)
λeλDx

−
αe−λDx

(
βbeDx + abe−Dx

)
βbeDx − abe−Dx

(
eλDx − 1

λ

)
− n

}
R∗(α)

n,β (x | λ; k, a, b) = 0.

(26)

Proof. Using operators (21) and (22) and in view of the monomiality principle M̂ P̂ {Pn (x)} =

nPn (x), we get (26).

Theorem 2.5. The following relation holds true

R∗(α)
n,β (x | λ; k, a, b)

(27)

=
n+1∑
l=0

(
n+ 1

l

)
R∗(α)

n+1−l,β (x | λ; k, a, b)
{
βb

ab
B∗
l,β

b

ab

(x+ 1 | λ)− B∗
l,β

b

ab

(x− 1 | λ)
}
.

Proof. From (13) and (10), we can write

∞∑
n=0

R∗(α)
n,β (x | λ; k, a, b) t

n

n!
=

1

t

(
2(1−k)tk

βb (1 + λt)
1
λ − ab (1 + λt)−

1
λ

)α

×

{
βb

ab
t (1 + λt)

x+1
λ

βb

ab
(1 + λt)

1
λ − (1 + λt)−

1
λ

− t (1 + λt)
x−1
λ

βb

ab
(1 + λt)

1
λ − (1 + λt)−

1
λ

}

=
1

t

∞∑
n=0

R∗(α)
n,β (λ; k, a, b)

tn

n!

{
βb

ab

∞∑
n=0

B∗
n,β

b

ab

(x+ 1 | λ) t
n

n!

−
∞∑
n=0

B∗
n,β

b

ab

(x− 1 | λ) t
n

n!

}
.

By using Cauchy product and comparing the coefficients of both sides, we have (27).

Theorem 2.6. The following relation holds true:

R∗(α)
n,β (x | λ; k, a, b) =

1

2

n∑
l=0

(
n

l

)
R∗(α)

n−l,β (λ; k, a, b)

×
{
βb

ab
E∗
l,β

b

ab

(x+ 1 | λ) + E∗
l,β

b

ab

(x− 1 | λ)
}

. (28)
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Proof. From (13) and (11), we find

∞∑
n=0

R∗(α)
n,β (x | λ; k, a, b) t

n

n!
=

1

2

(
21−k tk

βb (1 + λt)
1
λ − ab (1 + λt)−

1
λ

)α

(
βb

ab
2 (1 + λt)

x+1
λ

βb

ab
(1 + λt)

1
λ + (1 + λt)−

1
λ

+
2 (1 + λt)

x−1
λ

βb

ab
(1 + λt)

1
λ + (1 + λt)−

1
λ

)

=
1

2

∞∑
n=0

R∗(α)
n,β (λ; k, a, b)

tn

n!

{
βb

ab

∞∑
n=0

E∗
n,β

b

ab

(x+ 1 | λ) t
n

n!

+
∞∑
n=0

E∗
n,β

b

ab

(x− 1 | λ) t
n

n!

}
.

Using Cauchy product and comparing the coefficients of tn

n!
in both sides, we get (28).

Theorem 2.7. The following relation holds true

R∗(α)
n,β (x | λ; k, a, b) =

1

2

n+1∑
l=0

(
n+ 1

l

)
R∗(α)

n+1−l,β (λ; k, a, b)

×
{
βb

ab
G∗
l,β

b

ab

(x+ 1 | λ) + G∗
l,β

b

ab

(x− 1 | λ)
}

. (29)

3 Conclusion

We introduce and investigate the generalized degenerate type 2-unified Apostol–Bernoulli, Euler
and Genocchi polynomials and give explicit relations by using the monomiality principle. Also,
by using to monomiality principle and operators methods to the generalized the degenerate type
2-unified Apostol–Bernoulli, Euler and Genocchi polynomials, we have shown give some relations
and identities for these polynomials.
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