On certain arithmetical functions of exponents in the factorization of integers

József Sándor and Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 2, Pages 378–388
DOI: 10.7546/nntdm.2023.29.2.378-388
Full paper (PDF, 246 Kb)

Details

Authors and affiliations

József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania

Krassimir T. Atanassov
• Department of Bioinformatics and Mathematical Modelling,
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
• Intelligent Systems Laboratory,
Prof. Asen Zlatarov University, Burgas-8010, Bulgaria

Abstract

Some new results for the maximum and minimum exponents in factorizing integers are obtained. Related functions and generalized arithmetical functions are also introduced.

Keywords

  • Arithmetic function
  • Density
  • Maximum and minimum exponent
  • Number of prime factors
  • Statistical limit

2020 Mathematics Subject Classification

  • 11A25
  • 11A51
  • 11N37
  • 11N56

References

  1. Annapurna, U. (1972). Inequalities for σ(n) and φ(n). Mathematical Magazine, 45(4), 187–190.
  2. Atanassov, K. (1987). New integer functions, related to “φ” and “σ” functions. Bulletin of Number Theory and Related Topics, XI(1), 3–26.
  3. Atanassov, K. (1996). Irrational factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 2(3), 42–44.
  4. Atanassov, K. (2002). Converse factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(1), 37–38.
  5. Atanassov, K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
  6. De Koninck, J.-M., & Ivic, A. (1984). The distribution of the average prime divisor of an integer. Archiv der Mathematik, 43, 37–43.
  7. Duncan, R. L. (1970). On the factorization of integers. Proceedings of the American Mathematical Society, 25, 191–192.
  8. Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicum, 2, 241–244.
  9. Kendall, D. G., & Rankin, R. A. (1947). On the number of abelian groups of a given order. The Quarterly Journal of Mathematics, 18(72), 197–208.
  10. Krätzel, E. (1981). Zahlentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin.
  11. Niven, I. (1969). Average of exponents in factoring integers. Proceedings of the American Mathematical Society, 22, 356–360.
  12. Panaitopol, L. (2004). Properties of the Atanassov functions. Advanced Studies on Contemporary Mathematics, 8(1), 55–59.
  13. Sándor, J., Mitrinović, D. S., & Crstici, B. (1996). Handbook of Number Theory. Vol. 1. New York: Springer Verlag.
  14. Sándor, & Crstici, B. (2005). Handbook of Number Theory. Vol. 2. Berlin: Springer.
  15. Schinzel, A., & Šalát, T. (1994). Remarks on maximum and minimum exponents in factoring. Mathematica Slovaca, 44(5), 505–514.

Manuscript history

  • Received: 12 January 2023
  • Accepted: 21 May 2023
  • Online First: 23 May 2023

Copyright information

Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Sándor, J., & Atanassov, K. T. (2023). On certain arithmetical functions of exponents in the factorization of integers. Notes on Number Theory and Discrete Mathematics, 29(2), 378-388, DOI: 10.7546/nntdm.2023.29.2.378-388.

Comments are closed.