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1 Introduction

Let n =
r∏
i=1

paii > 1 be the prime factorization of the positive integer n (p1, p2, . . . , pr being

distinct primes; r, a1, a2, . . . , ar ≥ 1 being positive integers). The arithmetical functions

ω(n) = r, ω(1) = 1
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and

Ω(n) =
r∑
i=1

ai,Ω(1) = 1

denoting the number of distinct, respective, total numbers of prime factors of n, have been much
studied in the literature (see, e.g., [14], Chapter V).

In 1969, I. Niven [11] introduced and studied the arithmetical functions

H(n) = max{a1, a2, . . . , ar}, H(1) = 1,
(1)

h(n) = min{a1, a2, . . . , ar}, h(1) = 1.

For properties of these functions, see [15], Chapter 4. Here, we will mention only that for
each natural number a:

h(na) = ah(n),

H(na) = aH(n).

In 1947 D. G. Kendall and R. A. Rankin [9] considered the function

β(n) =
r∏
i=1

ai, β(1) = 1 (2)

(see, [15], Chapter 4).
In what follows, we will consider some new properties of the above functions. Generalizations

of (1) will be considered.

2 Main results

In what follows, f(x) ∼ g(x) means that

lim
x→∞

f(x)

g(x)
= 1.

For the number n in the Introduction, define

Ω1(n) =
r∑
i=1

1

ai
,Ω1(1) = 1.

Theorem 1. One has ∑
n≤x

ω(n)

Ω1(n)
∼ x (3)

and ∑
n≤x

(β(n))
1

ω(n) ∼ x, (4)

as x→ ∞.

Proof. If x1, x2, . . . , xr are positive real numbers, then it is well-known that

min{x1, x2, . . . , xr} ≤ Hr(x1, x2, . . . , xr) ≤ Gr(x1, x2, . . . , xr)

≤ Ar(x1, x2, . . . , xr) (5)

≤ max{x1, x2, . . . , xr},
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where

Hr(x1, x2, . . . , xr) =
r
r∑
i=1

1
xi

,

Gr(x1, x2, . . . , xr) =
r

√√√√ r∏
i=1

xi,

Ar(x1, x2, . . . , xr) =

r∑
i=1

xi

r
are the harmonic, geometric, and arithmetic means of x1, x2, . . . , xr, respectively.

Let x1 = a1, x2 = a2, . . . , xr = ar, with r = ω(n). Then (5) can be rewritten as

h(n) ≤ ω(n)

Ω1(n)
≤ (β(n))

1
ω(n) ≤ Ω(n)

ω(n)
≤ H(n), (6)

where n > 1.
Now, I. Niven [11] proved that

∑
n≤x

h(n) ∼ x,while R. L. Duncan [7] proved that
∑
n≤x

Ω(n)
ω(n)

∼ x

as x→ ∞. By using inequalities (6), relations (3) and (4) will follow.

Now, let f : N → N be an arithmetical function. we will extend the Niven functions (1) as
follows:

Hf (n) = max{f(a1), f(a2), . . . , f(ar)}, Hf (1) = 1
(7)

hf (n) = min{f(a1), f(a2), . . . , f(ar)}, hf (1) = 1.

For example, for the Euler totient function φ, one has

Hφ(n) = max{φ(a1), φ(a2), . . . , φ(ar)}, Hφ(1) = 1
(8)

hφ(n) = min{φ(a1), φ(a2), . . . , φ(ar)}, hφ(1) = 1.

For the sum-of-divisors function σ, we define

Hσ(n) = max{σ(a1), σ(a2), . . . , σ(ar)}, Hσ(1) = 1
(9)

hσ(n) = min{σ(a1), σ(a2), . . . , σ(ar)}, hσ(1) = 1.

These functions have not been studied up to now.
Following [3, 5, 12, 13], let us define for the above n the irrational and the restrictive factors,

respectively, by:

IF (n) =
r∏
i=1

p
1
ai
i ,

CF (n) =
r∏
i=1

pai−1
i .

Then we see immediately that

Ω(IF (n)) = Ω1(n),

Ω(CF (n)) = Ω(n)− r.
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Let us define

Ωf (n) =
r∑
i=1

f(ai),Ωf (1) = 1, (10)

as well as

Ωf,1(n) =
r∑
i=1

1

f(ai)
,Ωf,1(1) = 1 (11)

and *

βf (n) =
r∏
i=1

f(ai). (12)

The inequalities (6) can be extended as follows:

Theorem 2. One has

hf (n) ≤
ω(n)

Ωf,1(n)
≤ (βf (n))

1
ω(n) ≤ Ωf (n)

ω(n)
≤ Hf (n) (13)

for n > 1.

Proof. Apply inequalities (5) for x1 = f(a1), x2 = f(a2), . . . , xr = f(ar) and use the definitions
(10)–(12).

Theorem 3. Suppose that f(n) ≥ f(1) = 1 for any n ≥ 1. Then

Hf (n) ≤ Ωf (n)− ω(n) + 1 (14)

and
hf (n) ≥ Ωf (n)− (ω(n)− 1)Hf (n). (15)

Proof. Let f(a) = Hf (n). Then

Ωf (n) = f(a1) + · · ·+ f(a) + · · ·+ f(ar)

≥ (r − 1)f(1) +Hf (n),

as f(a1) ≥ f(1), . . . , f(ar) ≥ f(1), and f(1) = 1. Therefore the inequality (14) follows.

Now, let f(a) = hf (n). Then

Ωf (n) = f(a1) + · · ·+ f(a) + . . . f(ar)

≤ (r − 1)Hf (n) + f(a)

= (r − 1)Hf (n) + hf (n),

as f(a1) ≤ Hf (1), . . . , f(ar) ≤ Hf (n), and f(1) = 1. Therefore the inequality (15) follows.

Let

γ(n) =
r∏
i=1

pi, γ(1) = 1.

For the properties of this function see, e.g., [14], and [2], where it is denoted by mult(n).
——————————

* The function βφ(n) =
r∏

i=1

φ(ai) denoted by φl(n) has been studied by J. Sándor in 1996 (see [15]).
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Theorem 4. Let f be a multiplicative function such that

f(pa) ≥ pf(a) (16)

for any prime p and integer a ≥ 1. Then

hf (n) ≤
log f(n)

log γ(n)
(17)

for n > 1. If one has the converse of (16), i.e.,

f(pa) ≤ pf(a) (18)

then

Hf (n) ≥
log f(n)

log γ(n)
. (19)

Proof. By (16) and the multiplicativity of f we can write

f(n) =
r∏
i=1

f(paii ) ≥
r∏
i=1

p
f(ai)
i ≥

(
r∏
i=1

pi

)hf (n)

,

i.e.
f(n) ≥ (γ(n))hf (n),

and inequality (17) follows. The proof of (19) is similar.

Remark 1. We must mention that if the inequality (16) holds true for a set of integers S ⊂ N ,
then clearly (17) will be true for any n ∈ S. The similar assertion is true for inequality (19).

Remark 2. Let f(n) = φ(n). Then (16) is true for any n ≥ 2 with a ≥ 2, i.e., squarefull n and

φ(pa) = pa−1(p− 1) ≥ pφ(a)

by φ(a) ≤ a − 1 for a ≥ 2 and p ≥ 2. In the same manner, (18) is true for f(n) = σ(n), when

a ≥ 2 since σ(pa) ≤ pσ(a) is valid by pa+1 − 1

p− 1
< pa+1 ≤ pσ(a) by σ(a) ≥ a + 1 for a ≥ 2. Also,

(18) is true for f(n) = ψ(n), too, where ψ(n) denotes the Dedekind arithmetical function.
Thus, one has

hφ(n) ≤
logφ(n)

log γ(n)
, (20)

Hσ(n) ≥
log σ(n)

log γ(n)
, (21)

Hψ(n) ≥
logψ(n)

log γ(n)
, (22′)

when n is squarefull, i.e., when in the prime factorization of n, all ai ≥ 2. If n is not squarefull,
then clearly hφ(n) = hσ(n) = hψ(n) = 1.

Remark 3. If n =
r∏
i=1

ai > 1, denote nf =
r∏
i=1

p
f(ai)
i . Then

hf (n) ≤
log nf
log γ(n)

≤ Hf (n). (22)
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Indeed, (
r∏
i=1

pi

)hf (n)

≤ nf ≤

(
r∏
i=1

pi

)Hf (n)

and (22) follows.

Let as above, S ⊂ N . The asymptotic density of the set S is defined by

d(S) = lim
x→∞

S(x)

x
,

where S(x) denotes the number of elements of S that are less than or equal to x. In 1951,
H. Fast [8] defined the statistical convergence of the sequences. Let

Sε = {n : n ∈ N & |xn − x| ≥ ε}.

Then the sequence of real numbers {xn} is convergent to x (in writing limstat xn = x), if for
any ε > 0:

d(Sε) = 0.

Theorem 5. Suppose that f(n) ≥ f(1) = 1 for n ≥ 1, and

limstat

(
Ωf (n)− ω(n)

log n

)
= 0. (23)

Then

limstat

(
hf (n)

log n

)
= limstat

(
Hf (n)

log n

)
= 0. (24)

Proof. By using inequality (14) of Theorem 3, clearly, the right side of (24) follows. The left side
follows by

0 < hf (n) ≤ Hf (n).

Corollary 1. If 1 = f(1) ≤ f(n) ≤ n, then (23) is true.

Indeed, in this case, one has Ωf (n) ≤ Ω(n). In paper [16] it is proved that

limstat

(
Ω(n)− ω(n)

log n

)
= 0. (25)

Thus (23) follows.

Remark 4. One has

limstat

(
hφ(n)

log n

)
= limstat

(
Hφ(n)

log n

)
= 0. (26)

Indeed, 1 = φ(1) ≤ φ(n) are true, so (26) are consequences of (24) from Theorem 5.
A connection between the arithmetical functions Hf and φ is provided by the following

theorem.

Theorem 6. Let nf > 1 be defined in Remark 3. Then

φ(nf ) ≤ nf −Hf (n). (27)
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Proof. First, we mention that

φ

(
r∏
i=1

pi

)
=

r∏
i=1

(pi − 1) ≤
r∏
i=1

pi − 1.

If, multiply both sides of inequality
r∏
i=1

(pi − 1) ≤
r∏
i=1

pi − 1 (28)

with
r∏
i=1

pa−i−1
i , then we get the inequality

φ(n) ≤ n−
r∏
i=1

pai−1
i = n− n

γ(n)
. (29)

Now, we prove that
r∏
i=1

pai−1
i ≥ H(n). This follows by pa− 1 ≥ a for any p ≥ 2 and a ≥ 1.

Thus, by (29) we get
φ(n) ≤ n− n

γ(n)
≤ n−H(n). (30)

Apply (30) to n := nf , and using H(nf ) = Hf (n), relation (27) follows.

Remark 5. By using (30) and the known inequality (see, e.g., [14], Chapter 3)

φ(n)σ(n) >
6

π2
n2,

and U. Annapurna’s inequality

σ(n) < (
6

π2
)ω(n)−1.n.

√
n

(see, [1]) we get (
6

π2

)ω(n)−1√
n >

σ(n)

n
>

n

n−H(n)
· 6

π2
n2. (31)

Theorem 7. One has

hf ≤

(
r∏
i=1

f(ai)
pi

) 1
β∗(n)

≤

r∑
i=1

pif(ai)

β∗(n)
≤ Hf , (32)

where β∗(n) =
r∑
i=1

pi.

Proof. Applying the weighted geometric-arithmetic inequality
r∑
i=1

λif(ai) ≥
r∏
i=1

f(ai)
λi , (33)

with λi = pi
β∗(n)

and λi > 0,
r∑
i=1

λi = 1, we get the second inequality of (32). Clearly, from
r∏
i=1

f(ai)
λi ≥ min{f(a1), f(a2), . . . , f(ar)} = hf , max{f(a1), f(a2), . . . , f(ar)} = Hf and all

inequalities of (32) the result follows.

384



Let us define the converse factor (see [2])

CF (n) =
r∏
i=1

apii .

Letting f(n) = n in (32), and using the function †

B(n) =
r∑
i=1

αi.pi,

we get from (32)

h(n) ≤ CF (n)
1

β∗(n) ≤ B(n)

β∗(n)
≤ H(n). (34)

Corollary 2. One has the asymptotic relation for x→ ∞:∑
2≤n≤x

(CF (n))
1

β∗(n) ∼ x. (35)

Proof. By a result of J.-M. Koninck, P. Erdős and A. Ivić (see [14], p. 144), one has∑
2≤n≤x

B(n)

β∗(n)
∼ x.

Now, using Niven’s result
∑
n≤x

h(n) ∼ x, by the first two inequalities of (34) we get (35).

Remark 6. It is immediate that n and CF (n) cannot be compared, as e.g., for

n = p3
r∏
i=1

ppii ,

where p > max{p1, p2, . . . , pr} one has n ≤ CR(n). On the other hand, if n = pα
r∏
i=1

ppii with

max{p1, p2, . . . , pr} < p < α and p, α ≥ 3, then n > CR(n).

Now, we will consider the arithmetical function

β∗
h(n) =

r∑
i=1

p
h(n)
i . (36)

Clearly,

β∗(n) =
r∑
i=1

pi ≤ β∗
h(n) ≤

r∑
i=1

paii (37)

because h(n) ≤ ai for 1 ≤ i ≤ r.

Now, let B1(n) =
r∑
i=1

paii as defined in [14], p. 147. We have the following theorem.

——————————
† The properties of this function are discussed independently in [6,14] and [4], and in the last paper it is denoted

by ζ.
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Theorem 8. One has for x→ ∞: ∑
2≤n≤x

β∗
h(n) ∼

π2

12
· x2

log x
(38)

Proof. It is known that ∑
2≤n≤x

β∗(n) ∼ π2

12
· x2

log x

(by S. M. Kerawala) and ∑
2≤n≤x

B1(n) ∼ π2

12
· x2

log x

(by T. Z. Xuan, see [14], p. 147). Therefore, by inequality (37), relation (38) follows.

For the function H(n) we have the following asymptotic result.

Theorem 9. One has ∑
2≤n≤x

log
n

H(n)
∼ x log x (39)

for x→ ∞.

Proof. As we have seen in relation (30), one has H(n) ≤ n
γ(n)

. On the other hand, H(n) ≥ 1.
These together give the double inequality

log γ(n) ≤ log
n

H(n)
log n. (40)

Now, by the integral test, it is immediate that∑
2≤n≤x

log n ∼
∫ x

2

log tdt = x log x− x+ C ∼ x log x.

On the other hand, by a result of L. Panaitopol (see [14], p. 208) for x→ ∞,∑
n≤x

log γ(n) ∼ x log x. (41)

Thus, together with inequality (40), relation (39) holds.

Theorem 10. One has
lim sup log βσ(n) ·

log log n

log n
=

log 3

2
. (42)

Proof. Here, βσ(n) =
r∏
i=1

σ(ai). In what follows, we will use a classical Theorem by Drozdova

and Freiman (see, e.g., [10]). Let f be a multiplicative function with the property f(pk) = g(k),
where p is a prime, and g(k) depends only on k. Suppose g(k) ≥ 1 and there exists k0 with
g(k0) > 1. Assume that for a certain number a > 0 one has for k → ∞

log g(k) = O
(
k1−a

)
.
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Then, the maximal order of the magnitude of log f(n) is given by log g(m)

m
· log n

log log n
, where m

is defined by
log g(k)

k
≤ log g(m)

m
for k ≤ m and

log g(k)

k
<

log g(m)

m
for k > m.

In our case, clearly βσ is a multiplicative function and βσ(pk) = σ(k). It is known that for
k ≥ 3 (due to C. C. Lindner, see [5], p. 77)

σ(k) < k
√
k = k

3
2 .

Thus, for k ≥ 3:
log g(k)

k
<

3

2

log k

k
.

Define the function U(x) = log x

x
for x ≥ 1. As

U ′(x) =
1− log x

x2
≤ 0

for x ≥ e, it follows that x0 = e is a maximum point of U(x) and

U(x) ≤ U(e) =
1

e
.

But 2 < e < 3 and log 2

2
<

log 3

3
. So, we get that log k

k
<

log 3

3
for k ≥ 3. Thus, we get for

k ≥ 3 that
log g(k)

k
<

3

2
· log 3

3
=

log 3

2
.

But, as log g(k)

k
=

3

2
, we obtain that in the Theorem by Drozdova and Freiman m = 2 can be

selected. This proves Theorem 10.

3 Open problems

Finally, we state some open problems. Determine the remainder terms in the asymptotic expansions
of (3), (4), (35), (38), (39). In near future, we will conduct analogous research on other airthmetical
functions.
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