M. Rana, H. Kaur and K. Garg
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 2, Pages 360–371
DOI: 10.7546/nntdm.2023.29.2.360-371
Full paper (PDF, 234 Kb)
Details
Authors and affiliations
M. Rana
School of Mathematics, Thapar Institute of Engineering and Technology
Patiala-147004, Punjab, India
H. Kaur
School of Mathematics, Thapar Institute of Engineering and Technology
Patiala-147004, Punjab, India
K. Garg
School of Mathematics, Thapar Institute of Engineering and Technology
Patiala-147004, Punjab, India
Abstract
In this paper, we provide some recurrence relations connecting restricted partition functions and mock theta functions. Elementary manipulations are used including Jacobi triple product identity, Euler’s pentagonal number theorem, and Ramanujan’s theta functions for finding the recurrence relations.
Keywords
- Partition
- Generating function
- Recurrence relation
- Mock theta function
2020 Mathematics Subject Classification
- 05A15
- 05A17
- 05A30
- 11A67
- 11B37
- 11P81
References
- Andrews, G. E. (1976). The Theory of Partitions. Addison-Wesley, Reading, MA.
- Andrews, G. E., Dixit, A., & Yee, A. J. (2015). Partitions associated with the Ramanujan/ Watson mock theta functions ω(q), ν(q) and ϕ(q). Research in Number Theory, 1, 1–19.
- Brietzke, E. H. M., Da Silva, R., & Sellers, J. A. (2019). Congruences related to an eighth order mock theta function of Gordon and McIntosh. Journal of Mathematical Analysis and Applications, 479, 62–89.
- Choliy, Y., Kolitsch, L. W., & Sills, A. V. (2018). Partition Recurrences. Integers, 18B, 1–15.
- Da Silva, R., & Sakai, P. D. (2020). New partition function recurrences. Journal of Integer Sequences, 23, 1–16.
- Ewell, J. A. (1973). Partition recurrences. Journal of Combinatorial Theory, Series A, 14, 125–127.
- Ewell, J. A. (2004). Another recurrence for the partition function. JP Journal of Algebra, Number Theory and Applications, 4, 147–152.
- Gordon, B., & McIntosh, R. J. (2000). Some eight order mock theta functions. Journal of London Mathematical Society, 62, 321–335.
- Gordon, B., & McIntosh, R. J. (2011). A survey of classical mock theta functions. In: Alladi, K., & Garvan, F. (Eds.) Partitions, q−Series and Modular Forms. Developments in Mathematics 23, Springer, New York, 95–144.
- Kaur, H., & Rana, M. (2021). On second order mock theta function B(q). Electronic Research Archive, 30, 52–65.
- Kaur, H., & Rana, M. (2022). On some mock theta functions of order 2 and 3. Journal of Ramanujan Mathematical Society, 37, 221–229.
- MacMahon, P. A. (1921). Note on the parity of the number which enumerates the partition of a number. Proceedings of Cambridge Philosophical Society, 20, 281–283.
- Merca, M. (2017). New recurrences for Euler’s partition function. Turkish Journal of Mathematics, 41, 1184–1190.
- Nyirenda, D. (2019). On parity and recurrences for certain partition functions. Contributions to Discrete Mathematics, 15, 72–79.
- Ono, K., Robbins, N., & Wilson, B. (1996). Some recurrences for arithmetic functions. Journal of the Indian Mathematical Society, 62, 29–50.
- Sharma, S., & Rana, M. (2019). A new approach in interpreting some mock theta functions. International Journal of Number Theory, 15, 1369–1383.
- Wang, L. (2017). New congruences for partitions related to mock theta functions. Journal of Number Theory, 175, 51–65.
- Watson, G. N. (1936). The final problem: an account of the mock theta functions. Journal of the London Mathematical Society, 11, 55–80.
Manuscript history
- Received: 30 September 2022
- Revised: 4 April 2023
- Accepted: 12 May 2023
- Online First: 16 May 2023
Copyright information
Ⓒ 2023 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Rana, M., Kaur, H., & Garg, K. (2023). Recurrence relations connecting mock theta functions and restricted partition functions. Notes on Number Theory and Discrete Mathematics, 29(2), 360-371, DOI: 10.7546/nntdm.2023.29.2.360-371.