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1 Introduction

A partition of a positive integer n is a finite, non-increasing sequence of positive integers a1, a2,
a3, . . . , ar where

r∑
i=1

ai = n.

The number of partitions of the positive integer n are denoted by p(n). For example, the partitions
of 5 are:

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Here, p(5) = 7. By convention, p(0) = 1. If we impose certain restrictions on the number of
parts or/and the size of parts on a partition of positive integer n then it is known as Restricted
partition function. Let us denote the number of partitions of n into distinct parts by q(n). For
example, the partitions of 5 into distinct parts are 5, 4 + 1, 3 + 2. So, here q(n) = 3.

Euler [1] has studied the recurrence relation for unrestricted partition function p(n). For
n > 0,

p(n) +
∞∑
k=1

(−1)j(p(n− ξ(k)) + p(n− ξ(−k)) = 0, where ξ(k) =
3k2 + k

2
.

In 1921, parity recurrences for p(n) were studied by MacMahon [12]. Later on, Ewell [6] proved
several recurrence relations connecting p(n), q(n), and some other restricted partition functions.
One of his results is given as:

Theorem 1.1. [6] For each non-negative integer n,

q(2n) = p(n) +
∞∑
k=1

p(n− k(4k − 1)) + p(n− k(4k + 1)),

q(2n+ 1) =
∞∑
k=0

p(n− k(4k + 3)) + p(n− 1− k(4k + 5)).

Then, Ono et al. [15], in 1996, derived a number of recurrence relations for partitions into
distinct odd parts, partitions into an even number of parts, partitions into an odd number of parts
and many more, using classical techniques. For instance,

q(n) +
∞∑
n=1

(−1)jq(n− 2ξ(k)) + q(n− 2ξ(−k))) =

1, n = m(m+1)
2

,

0, otherwise.

In addition, Merca [13] in 2017, has derived new recurrence relations for Euler’s partition function
p(n) using bisectional pentagonal number theorem and obtained a logical method to determine
the parity of p(n). Similarly, Choliy et al. [4] proved the following recurrences for qq(n), where
qq(n) denotes the number of partitions into distinct and odd parts.

p(n)− 2p(n− 1) + 2p(n− 4)− 2p(n− 9) + · · ·+ (−1)j2p(n− k2) + · · · = (−1)nqq(n).
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Analogously, Nyirenda [14] has also given some parity and recurrence formulas for partition
functions. For more information on recurrence relations, we refer to [5, 7]. Recently, the first
two authors [10] presented some recurrence relations for the mock theta function B(q) of order 2.
Motivated by this work, we prove recurrence relations for partition functions associated with
mock theta functions and restricted partition functions.

We will begin by examining the partition function pω(n), which is associated with the third
order mock theta function ω(q), introduced by Watson [18] and due to Andrews et al. [2]. ω(q) is
defined as:

ω(q) =
∞∑
n=0

q2n
2+2n

(q; q2)2n+1

,

where

(a; q)n =
n−1∏
i=0

(1− aqi), (a; q)∞ =
∞∏
i=0

(1− aqi)

for a positive integer n. We will assume that a, q are complex numbers with |q| < 1. Also, we
have:

∞∑
n=1

pω(n)q
n = qω(q).

where pω(n) counts the number of partitions of n in which all the odd parts are less than twice
the smallest part.

Next, we consider the second partition function, sptω(n), which is also associated with the
third order mock theta function ω(q), as described in [2]. sptω(n) is the smallest part function
that counts the total number of smallest parts in the partition enumerated by pω(n). Its generating
function is:

∞∑
n=1

sptω(n)q
n =

∞∑
n=1

qn

(1− qn)2(qn+1; q)n(q2n+2; q2)∞
.

Finally, we examine the third partition function, v0(n), which is associated with the eighth order
mock theta function V0(q) given by Gordon and McIntosh [8]. v0(n) is defined as:

∞∑
n=0

v0(n)q
n =

∞∑
n=0

(−q; q2)nqn
2

(q; q2)n
=
V0(q) + 1

2
.

In this paper, we provide recurrence relations for three partition functions: pω(n), sptω(n), and
v0(n). We also establish their connection with restricted partition functions pl(n) and pld(n),
where pl(n) is the number of overpartitions of n with l copies, and pld(n) is the number of
partitions into distinct parts with l copies, where:

• pl(n): Number of overpartitions of n with l copies,

• pld(n): Number of partitions into distinct parts with l copies.

This paper is organized as follows: Section 2 provides some preliminaries that will be used in
the proof section. Section 3 contains the recurrence relations for partition functions pω(n) and
sptω(n). In Section 4, the recurrence relations for v0(n) are derived using classical techniques.
Before proceeding to the main results of the paper, let us review the preliminaries in Section 2.
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2 Preliminary results

Ramanujan’s theta function is defined as:

f(a, b) =
n=∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 ,

for |ab| < 1. Some special cases of f(a, b) are:

ψ(x) = f(x, x) =
∞∑
n=0

x
n(n+1)

2 , (1)

φ(x) = f(x, x3) = 1 + 2
∞∑
n=1

xn
2

. (2)

Jacobi Triple Product Identity [1]. If q, z are complex numbers such that | q |< 1 and z ̸= 0

then
∞∏
n=1

(1− q2n)(1 + q2n−1z−1)(1 + q2n−1z) =
∞∑

n=−∞

qn
2

zn = 1 +
∞∑
n=1

qn
2

(zn + z−n),

and the classical Jacobi’s identity is

(q; q)3∞ =
∞∑
n=0

(−1)k(2k + 1)qk(k+1)/2.

Euler’s pentagonal number theorem [1]. For | q |< 1 , we have

∞∏
n=1

(1− qn) = 1 +
∞∑

m=1

(−1)mq
1
2
m(3m−1)(1 + qm) =

∞∑
m=−∞

(−1)mq
1
2
m(3m−1).

To shorten the notation, we use fk
l = (ql; ql)k∞, where l and k are positive integers.

The generating function for pl(n) and pld(n) given as:
∞∑
n=0

pl(n)q
n =

(
f2
f 2
1

)l

, (3)

∞∑
n=0

pld(n)q
n =

(
f2
f1

)l

. (4)

3 Recurrence relations for pω(n) and sptω(n)

We have the relations from [17] given as:
∞∑
n=0

pω(8n+ 4)qn =
4f 10

2

f 9
1

, (5)

∞∑
n=0

sptω(2n+ 1)qn =
f 8
2

f 5
1

. (6)

Theorem 3.1. We have

pω(8n+ 4) = 4p9d(n)− 4p9d(n− 2)− 4p9d(n− 4) + 4p9d(n− 10) + 4p9d(n− 14)

+ · · ·+ 4(−1)k(p9d(n− k(3k − 1)) + p9d(n− k(3k + 1))) + · · · .
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Proof. We have (5)

∞∑
n=0

pω(8n+ 4)qn =
4f 10

2

f 9
1

= 4

(
f2
f1

)9

f2

= 4

(
∞∑
n=0

p9d(n)q
n

)(
∞∑

k=−∞

(−1)kqk(3k+1)

)

= 4

(
∞∑
n=0

p9d(n)q
n

)(
1 +

−1∑
k=−∞

(−1)kqk(3k+1) +
∞∑
k=1

(−1)kqk(3k+1)

)

= 4

(
∞∑
n=0

p9d(n)q
n

)(
1 +

∞∑
k=1

(−1)kqk(3k−1) +
∞∑
k=1

(−1)kqk(3k+1)

)

= 4
∞∑
n=0

p9d(n)q
n + 4

∞∑
n=0

∞∑
k=1

(−1)kp9d(n)q
k(3k−1)+n

+ 4
∞∑
n=0

∞∑
k=1

(−1)kp9d(n)q
k(3k+1)+n

= 4
∞∑
n=0

p9d(n)q
n + 4

∞∑
n=0

∞∑
k=1

(−1)kp9d(n− k(3k − 1))qn

+ 4
∞∑
n=0

∞∑
k=1

(−1)kp9d(n− k(3k + 1))qn.

On comparing the coefficients we have

pω(8n+ 4) = 4p9d(n) + 4
∞∑
k=1

(−1)k (p9d(n− k(3k − 1)) + p9d(n− k(3k + 1)))

= 4p9d(n)− 4p9d(n− 2)− 4p9d(n− 4) + 4p9d(n− 10) + 4p9d(n− 14)

+ · · ·+ 4(−1)k (p9d(n− k(3k − 1)) + p9d(n− k(3k + 1))) + · · · .

Theorem 3.2. We have

sptω(2n+1) = p5d(n)−3p5d(n−2)+5p5d(n−6)+ · · ·+(−1)k(2k+1)p5d(n−k(k+1))+ · · · .

Proof. We have (6)

∞∑
n=0

sptω(2n+ 1)qn =
f 8
2

f 5
1

=

(
f2
f1

)5

f 3
2

=

(
∞∑
n=0

p5d(n)q
n

)(
∞∑
k=0

(−1)k(2k + 1)qk(k+1)

)
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=
∞∑
n=0

∞∑
k=0

(−1)k(2k + 1)p5d(n)q
k(k+1)+n

=
∞∑
n=0

(
∞∑
k=0

(−1)k(2k + 1)p5d(n− k(k + 1))

)
qn.

On comparing the coefficients, we get

sptω(2n+ 1) =
∞∑
k=0

(−1)k(2k + 1)p5d(n− k(k + 1))

= p5d(n)− 3p5d(n− 2) + 5p5d(n− 6) + · · ·+
(−1)k(2k + 1)p5d(n− k(k + 1)) + · · · .

4 Recurrence relations for v0(n)

Theorem 4.1. [3] We have
∞∑
n=0

v0(4n+ 1)qn =
f 5
2

f 4
1

, (7)

∞∑
n=0

(4n+ 2)qn = 2
f 4
4

f 2
1 f2

, (8)

∞∑
n=0

v0(6n+ 4)qn = 3
f 3
2 f

3
6

f 4
1 f4

, (9)

∞∑
n=0

v0(8n+ 5)qn = 4
f 2
2 f

4
4

f 5
1

, (10)

∞∑
n=0

v0(8n+ 6)qn = 4
f 6
2 f

2
8

f 6
1 f4

, (11)

∞∑
n=0

v0(12n+ 5)qn = 4
f 10
2 f

2
3

f 10
1 f6

, (12)

∞∑
n=0

v0(16n+ 12) = 16
f 11
2 f

2
4

f 12
1

. (13)

Theorem 4.2. We have

v0(4n+ 1) = p4d(n)− (p4d(n− 2) + p4d(n− 4)) + (p4d(n− 10) + p4d(n− 14))

+ · · ·+ (−1)k(p4d(n− k(3k − 1)) + p4d(n− k(3k + 1)) + · · · .

Proof. We have (7)
∞∑
n=0

v0(4n+ 1)qn =
f 5
2

f 4
1

=

(
f2
f1

)4

f2
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=

(
∞∑
n=0

p4d(n)q
n

)(
∞∑

k=−∞

(−1)kqk(3k+1)

)

=

(
∞∑
n=0

p4d(n)q
n

)(
1 +

∞∑
k=1

(−1)kqk(3k−1) +
∞∑
k=1

(−1)kqk(3k+1)

)

=
∞∑
n=0

p4d(n)q
n +

∞∑
n=0

∞∑
k=1

(−1)kp4d(n)q
k(3k−1)+n

+
∞∑
n=0

∞∑
k=1

(−1)kp4d(n)q
k(3k+1)+n

=
∞∑
n=0

p4d(n)q
n +

∞∑
n=0

∞∑
k=1

(−1)kp4d(n− k(3k − 1))qn

+
∞∑
n=0

∞∑
k=1

(−1)kp4d(n− k(3k + 1))qn.

On comparing the coefficients, we have

v0(4n+ 1) = p4d(n) +
∞∑
k=1

(−1)k (p4d(n− k(3k − 1)) + p4d(n− k(3k + 1)))

= p4d(n)− (p4d(n− 2) + p4d(n− 4)) + (p4d(n− 10) + p4d(n− 14))

+ · · ·+ (−1)k(p4d(n− k(3k − 1)) + p4d(n− k(3k + 1)) + · · · .

Theorem 4.3. We have

v0(4n+ 2) = 2
∞∑

m=0

⌊n−2m(m+1)
2

⌋∑
c=0

(−1)m(2m+ 1)p (n− 2m(m+ 1)− 2c) p(c).

Proof. We have (8)

∞∑
n=0

v0(4n+ 2)qn = 2
f 4
4

f 2
1 f2

= 2
f 4
4

f 2
2

f2
f 2
1

= 2

(
f4
f 2
2

)(
f2
f 2
1

)
f 3
4

= 2

(
∞∑
k=0

p(k)q2k

)(
∞∑

m=0

p(m)qm

)(
f 3
4

)
= 2

(
∞∑
k=0

p(k)q2k

)(
∞∑

m=0

p(m)qm

)(
∞∑
n=0

(−1)n(2n+ 1)q2n(n+1)

)

= 2

 ∞∑
k=0

⌊ k
2
⌋∑

c=0

p (k − 2c) p(c)qk

( ∞∑
n=0

(−1)n(2n+ 1)q2n(n+1)

)
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= 2
∞∑
n=0

∞∑
m=0

⌊n−2m(m+1)
2

⌋∑
c=0

(−1)m(2m+ 1)p (n− 2m(m+ 1)− 2c) p(c)qn.

On comparing the coefficients we get

v0(4n+ 2) = 2
∞∑

m=0

⌊n−2m(m+1)
2

⌋∑
c=0

(−1)m(2m+ 1)p (n− 2m(m+ 1)− 2c) p(c).

Theorem 4.4. We have
⌊n
2
⌋∑

c=0

v0(6n− 12c+ 4)pd(c) = 3p2(n)− 9p2(n− 6) + 15p2(n− 18) + · · ·

+ 3(−1)k(2k + 1)p2(n− 3k(k + 1)) + · · · .

Proof. We have (9)
∞∑
n=0

v0(6n+ 4)qn = 3
f 3
2 f

3
6

f 4
1 f4

= 3

(
f2
f 2
1

)2
f2f

3
6

f4
,(

∞∑
n=0

v0(6n+ 4)qn

)(
f4
f2

)
= 3

(
f2
f 2
1

)2

f 3
6 ,

( ∞∑
n=0

v0(6n+ 4)qn

)( ∞∑
n=0

pd(n)q
2n

)
= 3

( ∞∑
n=0

p2(n)q
n

)( ∞∑
k=0

(−1)k(2k + 1)q3k(k+1)

)
,

∞∑
n=0

⌊n
2
⌋∑

c=0

v0(6(n− 2c) + 4)pd(c)q
n = 3

∞∑
n=0

∞∑
k=0

(−1)k(2k + 1)p2(n− 3k(k + 1))qn.

On comparing the coefficients, we get

⌊n
2
⌋∑

c=0

v0(6n− 12c+ 4)pd(c) = 3p2(n)− 9p2(n− 6) + 15p2(n− 18) + · · ·

+3(−1)k(2k + 1)p2(n− 3k(k + 1)) + · · · .

Theorem 4.5. We have

v0(8n+ 5) = 4p8,4(n) + 4p8,4(n− 1) + 4p8,4(n− 3) + · · ·+ 4p8,4

(
n− k(k + 1)

2

)
+ · · · .

Proof. We have (10)
∞∑
n=0

v0(8n+ 5)qn = 4
f 2
2 f

4
4

f 5
1

= 4

(
f4
f1

)4
f 2
2

f1

= 4

(
∞∏
i=1

1− q4i

1− qi

)4

ψ(q)
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= 4

(
∞∏
i=1

(1 + qi)(1 + q2i)

)4

ψ(q),

= 4

(
∞∏
i=1

(1 + q2i)8(1 + q2i+1)4

)
∞∑
k=0

q
k(k+1)

2

= 4

(
∞∑
n=0

p8,4(n)q
n

)(
∞∑
k=0

q
k(k+1)

2

)

= 4

(
∞∑
n=0

∞∑
k=0

p8,4

(
n− k(k + 1)

2

))
qn

On comparing the coefficients, we get

v0(8n+ 5) = 4p8,4(n) + 4p8,4(n− 1) + 4p8,4(n− 3) + · · ·+ 4p8,4

(
n− k(k + 1)

2

)
+ · · · .

Theorem 4.6. We have

v0(8n+6) = 4p6d(n)+4p6d(n−4)+4p6d(n−12)+4p6d(n−24)+· · ·+4p6d(n−2k(k+1))+· · · .

Proof. We have (11)
∞∑
n=0

v0(8n+ 6)qn = 4
f 6
2 f

2
8

f 6
1 f4

= 4

(
f2
f1

)6
f 2
8

f4

= 4

(
∞∑
n=0

p6d(n)q
n

)(
∞∑
k=0

q
4k(k+1)

2

)

= 4

(
∞∑
n=0

p6d(n)q
n

)(
∞∑
k=0

q2k(k+1)

)

= 4
∞∑
n=0

∞∑
k=0

p6d(n)q
2k(k+1)+n

= 4
∞∑
n=0

∞∑
k=0

p6d(n− 2k(k + 1))qn.

On comparing the coefficients, we get

v0(8n+ 6) = 4
∞∑
k=0

p6d(n− 2k(k + 1))qn,

v0(8n+ 6) = 4p6d(n) + 4p6d(n− 4) + 4p6d(n− 12) + 4p6d(n− 24) + · · ·
+ 4p6d(n− 2k(k + 1)) + · · · .

Theorem 4.7. We have

v0(12n+ 5) = 4p10d(n)− 8p10d(n− 3) + 8p10d(n− 12)− 8p10d(n− 27)

+ · · ·+ 8(−1)kp10d(n− 3k2) + · · · .
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Proof. We have (12)

∞∑
n=0

v0(12n+ 5)qn = 4
f 10
2 f

2
3

f 10
1 f6

= 4

(
f2
f1

)10
f 2
3

f6

= 4

(
∞∑
n=0

p10d(n)q
n

)(
∞∑

k=−∞

(−1)kq3k
2

)

= 4

(
∞∑
n=0

p10d(n)q
n

)(
1 + 2

∞∑
k=1

(−1)kq3k
2

)

= 4
∞∑
n=0

p10d(n)q
n + 8

∞∑
n=0

∞∑
k=1

(−1)kp10d(n)q
n+3k2

= 4
∞∑
n=0

p10d(n)q
n + 8

∞∑
n=0

∞∑
k=1

(−1)kp10d(n− 3k2)qn.

On comparing the coefficients we have

v0(12n+ 5) = 4p10d(n) + 8
∞∑
k=1

(−1)k
(
p10d(n− 3k2)

)
= 4p10d(n)− 8p10d(n− 3) + 8p10d(n− 12) +−8p10d(n− 27) + · · ·

+ 8(−1)k
(
p10d(n− 3k2)

)
+ · · · .

Theorem 4.8. We have

v0(16n+12) = 16p12d(n) + 16p12d(n− 2)+ 16p12d(n− 6)+ · · ·+16p12d(n− k(k+1))+ · · · .

Proof. We have (13)

∞∑
n=0

v0(16n+ 12)qn = 16
f 11
2 f

2
4

f 12
1

= 16

(
f2
f1

)11
f 2
4

f1

= 16
∞∏
i=1

(1 + qi)11
f 2
4

f1

= 16
∞∏
i=1

(1 + qi)11(1 + qi)(1 + q2i)(1− q4i)

= 16
∞∏
i=1

(1 + qi)12(1 + q2i)(1− q4i)

= 16
∞∏
i=1

(1 + qi)12
f 2
4

f2
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= 16

(
∞∑
n=0

p12d(n)q
n

)(
∞∑
k=0

qk(k+1)

)

= 16
∞∑
n=0

∞∑
k=0

p12d(n)q
k(k+1)+n

= 16
∞∑
n=0

(
∞∑
k=0

p12d(n− k(k + 1))

)
qn.

On comparing the coefficients, we get

v0(16n+ 12) = 16
∞∑
k=0

p12d(n− k(k + 1)),

= 16p12d(n) + 16p12d(n− 2) + 16p12d(n− 6)

+ · · ·+ 16p12d(n− k(k + 1)) + · · · .

5 Conclusion

In literature, we can find the enumeration of mock theta functions, including generating functions
and various combinatorial tools (refer to [2,11,16]). In this paper, we have established connections
between mock theta functions and some restricted partition functions through recurrence relations.
For future research, one could explore recurrence relations connecting universal mock theta
functions such as g2(x, q), g3(x, q), for more details of universal mock theta functions, refer [9],
and other specified partition functions. Additionally, one can investigate alternative techniques to
study recurrence relations instead of relying solely on generating functions.
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