Bakir Farhi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 749–757
DOI: 10.7546/nntdm.2022.28.4.749-757
Full paper (PDF, 199 Kb)
Details
Authors and affiliations
Bakir Farhi
![]()
Laboratoire de Mathématiques appliqueés,
Faculté des Sciences Exactes, Université de Bejaia
06000 Bejaia, Algeria
Abstract
In this note, we investigate some properties of the integer sequence of general term
(
) to derive a new identity of the Genocchi numbers
(
), which immediately shows that
for any
. In another direction, we obtain nontrivial lower bounds for the
-adic valuations of the rational numbers
.
Keywords
- Genocchi numbers
- Stirling numbers
- Binomial coefficients
- p-adic valuations
2020 Mathematics Subject Classification
- 11B65
- 11B68
- 11B73
References
- Comtet, L. (1974). Advanced Combinatorics. The Art of Finite and Infinite Expansions (Revised and enlarged ed.). D. Reidel Publ. Co., Dordrecht.
- Dubickas, A. (in press). On a sequence of integers with unusual divisibility by a power of 2. Miskolc Mathematical Notes. Code: MMN-4276.
- Dumont, D. (1972). Sur une conjecture de Gandhi concernant les nombres de Genocchi. Discrete Mathematics, 1(4), 321–327.
- Dumont, D. (1974). Interprétations combinatoires des nombres de Genocchi. Duke Mathematical Journal, 41(2), 305–318.
- Farhi, B. (2009). An identity involving the least common multiple of binomial coefficients and its application. The American Mathematical Monthly, 116(9), 836–839.
- Flajolet, P., & Sedgwick, R. (2009). Analytic Combinatorics. Cambridge University Press, Cambridge.
- Genocchi, A. (1852). Intorno all espressioni generali di numeri Bernoulliani. Annali di scienze mat. e fisiche, compilati da Barnaba Tortolini, 3, 395–405.
- Graham, R. L., Knuth, D. E., & Patashnik, O. (1990). Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Publishing Company, New York.
- Moll, V. H. (2012). Numbers and Functions. Student Mathematical Library. American Mathematical Society, Providence.
- Pla, J. (1997). The sum of inverses of binomial coefficients revisited. The Fibonacci Quarterly, 35(4), 342–345.
- Riordan, J. (1968). Combinatorial Identities. John Wiley and Sons Inc., New York.
- Rockett, A. M. (1981). Sums of the inverses of binomial coefficients. The Fibonacci Quarterly, 19(5), 433–445.
- Seidel, L. (1877). Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen. Sitzungsberichte der Mathematisch-Physikalischen Classe der K.B. Akademie der Wissenschaften zu München, 157–187.
- Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences. Available online at: https://oeis.org/.
- Stanley, R. P. (1997). Enumerative Combinatorics, Vol. 1. Cambridge University Press, Cambridge.
- Sury, B. (1993). Sum of the reciprocals of the binomial coefficients. European Journal of Combinatorics, 14, 351–353.
- Sury, B., Wang, T., & Zhao, F. Z. (2004). Some identities involving reciprocals of binomial coefficients. Journal of Integer Sequences, 7, Article 04.2.8.
- Trif, T. (2000). Combinatorial sums and series involving inverses of binomial coefficients. The Fibonacci Quarterly, 38, 79–84.
- Viennot, G. (1981). Interprétations combinatoires des nombres d’Euler et de Genocchi. Seminaire de Théorie des Nombres de Bordeaux, exposé n° 11, 1–94.
- Yang, J. H., & Zhao, F. Z. (2006). Sums involving the inverses of binomial coefficients. Journal of Integer Sequences, 9, Article 06.4.2.
- Zhao, F. Z., & Wang, T. (2005). Some results for sums of the inverses of binomial
coefficients. Integers, 5, Paper A22.
Manuscript history
- Received: 21 May 2022
- Revised: 14 October 2022
- Accepted: 12 November 2022
- Online First: 14 November 2022
Related papers
- Farhi, B. (2023). Nontrivial lower bounds for the p-adic valuations of some type of rational numbers and an application for establishing the integrality of some rational sequences. Notes on Number Theory and Discrete Mathematics, 29(4), 820-826.
Cite this paper
Farhi, B. (2022). The integrality of the Genocchi numbers obtained through a new identity and other results. Notes on Number Theory and Discrete Mathematics, 28(4), 749-757, DOI: 10.7546/nntdm.2022.28.4.749-757.
