Hye Kyung Kim
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 666–676
DOI: 10.7546/nntdm.2022.28.4.666-676
Full paper (PDF, 185 Kb)
Details
Authors and affiliations
Hye Kyung Kim
Department of Mathematics Education, Daegu Catholic University
Gyeongsan 38430, Republic of Korea
Abstract
In this paper, we introduce a new type degenerate Stirling numbers of the second kind and their degenerate Bell polynomials, which is different from degenerate Stirling numbers of the second kind studied so far. We investigate the explicit formula, recurrence relation and Dobinski-like formula of a new type degenerate Stirling numbers of the second kind. We also derived several interesting expressions and identities for bell polynomials of these new type degenerate Stirling numbers of the second kind including the generating function, recurrence relation, differential equation with Bernoulli number as coefficients, the derivative and Riemann integral, so on.
Keywords
- Stirling numbers of the first and second kind
- Degenerate Stirling numbers of the second kind
- Bell polynomials
- Bernoulli polynomials
2020 Mathematics Subject Classification
- 05A15
- 05A18
- 11B68
References
- Boyadzhiev, K. N. (2005). A series transformation formula and related polynomials. International Journal of Mathematics and Mathematical Sciences, 23, 3849–3866.
- Comtet, L. (1974). Advanced Combinatorics. The Art of Finite and Infinite Expansions. (Revised and enlarged edition) D. Reidel Publishing Co., Dordrecht.
- Carlitz, L. (1979). Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas
Mathematica, 15, 51–88. - Khan, W. A., & Kamarujjama, M. (2021). Some identities on type 2 degenerate Daehee polynomials and numbers. Indian Journal of Mathematics, 63(3), 433-447.
- Khan, W. A., & Kamarujjama, M. (2022). A note on type 2 degenerate multi poly-Bernoulli polynomials of the second kind. Jangjeon Mathematics, 25(1), 59–68.
- Kim, D. S., & Kim, T. (2020). A note on a new type of degenerate Bernoulli numbers. Russian Journal of Mathematical Physics, 27(2), 227–235.
- Kim, D. S., Kim, T., Kim, H. Y., & Lee, H. (2020). Two variable degenerate Bell
polynomials associated with Poisson degenerate central moments. Proceedings of the Jangjeon Mathematical Society, 23(4), 587–596. - Kim, H. K. (2020). Degenerate Lah–Bell polynomials arising from degenerate Sheffer sequences. Advances in Difference Equations, 2020, Article 687.
- Kim, H. K. (2021). Fully degenerate Bell polynomials associated with degenerate Poisson random variables. Open Mathematics, 19, 284–296.
- Kim, T. (2017). A note on degenerate Stirling polynomials of the second kind. Proceedings of the Jangjeon Mathematical Society, 20(3), 319–331.
- Kim, T., & Kim, D. S. (2022). On some degenerate differential and degenerate difference operators. Russian Journal of Mathematical Physics, 29(1), 37–46.
- Kim, T., & Kim, D. S. (2022). Some identities on degenerate Bell polynomials and their related identities. Proceedings of the Jangjeon Mathematical Society, 25(1), 1–11.
- Kim, T., Kim, D. S., & Dolgy, D. V. (2017). On partially degenerate Bell numbers and polynomials. Proceedings of the Jangjeon Mathematical Society, 20(3), 337–345.
- Kim, T., Kim, D. S., Jang L.-C., & Kim, H. Y. (2020). A note on discrete degenerate random variables. Proceedings of the Jangjeon Mathematical Society, 49(2), 521–538.
- Kim, T., Kim, D. S., Jang, L.-C., Lee, H., & Kim, H. (2022). Representations of degenerate Hermite polynomials. Advances in Applied Mathematics, 2139, Article 102359.
- Kim, T., Kim, D. S., & Kim, H. K. (2022). Some identities involving degenerate Stirling numbers arising from normal ordering. AIMS Mathematics, 7(9), 17357–17368.
- Kim, T., Kim, D. S., Kim H. Y., & Kwon, J. (2020). Some identities of degenerate Bell polynomials. Mathematics, 8(1), Article 40.
- Kim, T., Kim, D. S., Kwon J., & Lee, H. (2020). A note on degenerate gamma random variables. Revista de Educación, 388(4), 29–44.
- Kim, T., Kim, D. S., Lee, H., Park, S., & Kwon, J. (2021). New properties on degenerate Bell polynomials. Complexity, 2021, Article 7648994.
- Roman, S. (1984). The Umbral Calculus. Pure and Applied Mathematics. Vol. 111.
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York.
Manuscript history
- Received: 19 July 2022
- Revised: 22 September 2022
- Accepted: 24 October 2022
- Online First: 27 October 2022
Related papers
Cite this paper
Kim, H. K. (2022). New type degenerate Stirling numbers and Bell polynomials. Notes on Number Theory and Discrete Mathematics, 28(4), 666-676, DOI: 10.7546/nntdm.2022.28.4.666-676.