Mihoub Bouderbala and Meselem Karras
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 648–655
DOI: 10.7546/nntdm.2022.28.4.648-655
Full paper (PDF, 216 Kb)
Details
Authors and affiliations
Mihoub Bouderbala
Department of Mathematics, University of Djilali Bounaama
Khemis Miliana, FIMA Laboratory, Algeria
Meselem Karras
Department of Mathematics, University of Djilali Bounaama
Khemis Miliana, FIMA Laboratory, Algeria
Abstract
In this paper, we obtain asymptotic formula on the “hyperbolic” summation
such that , where denotes the Piltz divisor function, and is the unitary analogue function of .
Keywords
- Number of distinct prime divisors
- Hyperbolic summation
- Piltz divisor function
2020 Mathematics Subject Classification
- 11N37
- 11A25
- 11N36
References
- Bordellès, O. (2007). Mean values of generalized GCD-sum and LCM-sum functions. Journal of Integer Sequences, 10, Article 07.9.2.
- Bordellès, O. (2020). Arithmetic Tales. Advanced Edition, Springer (2nd edition).
- Heyman, R., & Tóth, L. (2021). On certain sums of arithmetic functions involving the GCD and LCM of two positive integers. Results in Mathematics, 76, Article 49.
- Karras, M., & Derbal, A. (2020). Mean value of an arithmetic function associated with the Piltz divisor function. Asian-European Journal of Mathematics, 13(03), Article 2050062.
- Sándor, J. (1989). On the arithmetical functions dk(n). Journal of Numerical Analysis and Approximation Theory. 18(1), 89–94.
- Sándor, J. (1996). On the arithmetical functions dk(n) and dk∗(n). Portugaliae Mathematica, 53(1), 107–115.
Manuscript history
- Received: 29 March 2022
- Revised: 22 September 2022
- Accepted: 22 October 2022
- Online First: 24 October 2022
Related papers
Cite this paper
Bouderbala, M., & Karras, M. (2022). Asymptotic formula of a “hyperbolic” summation related to the Piltz divisor function. Notes on Number Theory and Discrete Mathematics, 28(4), 648-655, DOI: 10.7546/nntdm.2022.28.4.648-655.