Some multiple Dirichlet series of completely multiplicative arithmetic functions

Nabil Tahmi and Abdallah Derbal
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 4, Pages 603–616
DOI: 10.7546/nntdm.2022.28.4.603-616
Download PDF (216 Kb)

Details

Authors and affiliations

Nabil Tahmi
Department of Mathematics, ENS of Laghouat and EDPNLHM Laboratory,
ENS of Kouba, Algiers, Algeria

Abdallah Derbal
Department of Mathematics, EDPNLHM Laboratory,
ENS of Kouba, Algiers, Algeria

Abstract

Let f_r: \mathbb{N}^r \longrightarrow \mathbb{C} be an arithmetic function of r variables, where r\geq 2. We study multiple Dirichlet series defined by

    \begin{equation*} D(f_r,s_1,\ldots,s_r)=\sum\limits_{\substack{n_1,\ldots,n_r=1 \\ (n_1,\ldots,n_r)=1}}^{+\infty}\frac{f_r(n_1,\ldots,n_r)}{n_1^{s_1}\cdots n_r^{s_r}}, \end{equation*}

where f_r(n_1,\ldots,n_r)=f(n_1)\cdots f(n_r) and f is a completely multiplicative or a specially multiplicative arithmetic function of a single variable. We obtain formulas for these series expressed by infinite products over the primes. We also consider the cases of certain particular completely multiplicative and specially multiplicative functions.

Keywords

  • Completely multiplicative function
  • Specially multiplicative function
  • Multiple Dirichlet series
  • Eulerian product
  • Riemann zeta function
  • Dirichlet L-function

2020 Mathematics Subject Classification

  • 11M32, 11M06, 11A25

References

  1. Apostol, T. M. (1976). Introduction to Analytic Number Theory, Springer-Verlag, New York.
  2. McCarthy, P. J. (1986). Introduction to Arithmetical Functions. Springer.
  3. Nowak, W. G., & Tóth, L. (2014). On the average number of subgroups of the group Zm × Zn. International Journal of Number Theory, 10(2), 363–374.
  4. Tóth, L. (2010). A survey of gcd-sum functions. Journal of Integer Sequences, 13, 2–3. (Article 10.8.1).
  5. Tóth, L. (2011). Menon’s identity and arithmetical sums representing functions of several variables. Rendiconti del Seminario Matematico Universita e Politecnico di Torino, 69, 97–110.
  6. Tóth, L. (2013). Two generalizations of the Busche–Ramanujan identities.  International Journal of Number Theory, 9, 1301–1311.
  7. Tóth, L. (2014). Multiplicative Arithmetic Functions of Several Variables: A Survey. In: Rassias, Th. M., & Pardalos, P. (Eds.) Mathematics Without Boundaries, Surveys in Pure Mathematics. Springer, New York, pp. 483–514.
  8. Tóth, L., & Zhai, W. (2010). On multivariable averages of divisor functions. Journal of Number Theory, 192(1), 251–269.

Manuscript history

  • Received: 22 February 2022
  • Revised: 23 September 2022
  • Accepted: 12 October 2022
  • Online First: 14 October 2022

Related papers

Cite this paper

Tahmi, N., & Derbal, A. (2022). Some multiple Dirichlet series of completely multiplicative arithmetic functions. Notes on Number Theory and Discrete Mathematics, 28(4), 603-616, DOI: 10.7546/nntdm.2022.28.4.603-616.

Comments are closed.