A. I. Vijaya Shankar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 3, Pages 581–588
DOI: 10.7546/nntdm.2022.28.3.581-588
Full paper (PDF, 174 Kb)
Details
Authors and affiliations
A. I. Vijaya Shankar
Department of Studies in Mathematics, University of Mysore
Manasagangotri, Mysuru – 570 006, Karnataka, India
Abstract
S. Ramanujan recorded theta function identities of different levels in the unorganized pages of his second notebook and the lost notebook. In this paper, we prove level 6 and level 10 theta function identities by using Eisenstein series identities.
Keywords
- Theta functions
- Eisenstein series
2020 Mathematics Subject Classification
- 11F20
- 11M36
References
- Berndt, B. C. (1991). Ramanujan’s Notebooks, Part III. Springer, New York.
- Berndt, B. C. (1994). Ramanujan’s Notebooks, Part IV. Springer, New York.
- Bhargava, S., Vasuki, K. R., & Rajanna, K. R. (2015). On some Ramanujan identities for the ratios of eta-functions. Ukrainian Mathematical Journal, 66, 1011–1028.
- Bhuvan, E. N. (2018). On some Eisenstein series identities associated with Borwein’s cubic theta functions. Indian Journal of Pure and Applied Mathematics, 49, 689–703.
- Cooper, S. (2009). On Ramanujan’s function k = r(q)r2(q2). Ramanujan Journal, 20, 311–328.
- Cooper, S. (2017). Ramanujan’s Theta Functions. Springer, Cham.
- Cooper, S., & Ye, D. (2016). Level 14 and 15 analogues of Ramanujan’s Elliptic functions to alternative bases. Transactions of the American Mathematical Society, 368, 7883–7910.
- Gugg, C. (2009). Two modular equations for squares of the Rogers–Ramanujan functions with applications. Ramanujan Journal, 18, 183–207.
- Ramanujan, S., (1957). Notebooks. Vol. 1. Tata Institute of Fundamental Research, Bombay.
- Ramanujan, S., (1957). Notebooks. Vol. 2. Tata Institute of Fundamental Research, Bombay.
- Ramanujan, S., (1988). The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi.
- Veeresha, R. G. (2015). An elementary approach to Ramanujan’s modular equations of degree 7 and its applications [Doctoral dissertation, University of Mysore]. Shodhganga Repository. https://shodhganga.inflibnet.ac.in/handle/10603/108538
Manuscript history
- Received: 6 May 2022
- Revised: 19 September 2022
- Accepted: 21 September 2022
- Online First: 28 September 2022
Related papers
Cite this paper
Vijaya Shankar, A. I. (2022). Eisenstein series of level 6 and level 10 with their applications to theta function identities of Ramanujan. Notes on Number Theory and Discrete Mathematics, 28(3), 581-588, DOI: 10.7546/nntdm.2022.28.3.581-588.