**Neşe Ömür, Sibel Koparal, Ömer Duran and Kübra Nur Südemen**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 28, 2022, Number 3, Pages 564–574

DOI: 10.7546/nntdm.2022.28.3.564-574

**Full paper (PDF, 192 Kb)**

## Details

### Authors and affiliations

Neşe Ömür

*Department of Bioinformatics and Mathematical Modelling,
Department of Mathematics, University of Kocaeli
41380 Izmit, Kocaeli, Turkey*

Sibel Koparal

*Department of Bioinformatics and Mathematical Modelling,
Department of Mathematics, University of Kocaeli
41380 Izmit, Kocaeli, Turkey*

Ömer Duran

*Department of Bioinformatics and Mathematical Modelling,
Department of Mathematics, University of Kocaeli
41380 Izmit, Kocaeli, Turkey*

Kübra Nur Südemen

Department of Mathematics, University of Kocaeli

41380 Izmit, Kocaeli, Turkey

### Abstract

In this paper, we get new identities involving Bernoulli, Daehee and Stirling numbers, and their representations by using *p*-adic integrals and combinatorial techniques.

### Keywords

*p*-adic integral*q*-Bernoulli numbers- Generating functions

### 2020 Mathematics Subject Classification

- 05A15
- 11S80
- 11B68

### References

- Duran, Ö., Ömür, N., & Koparal, S. (2020). On sums with generalized harmonic, hyperharmonic and special numbers.
*Miskolc Mathematical Notes*, 21(2), 791–803. - Euler, L. (1748).
*Introductio in Analysin in Nitorum*. Apud Marcum-Michaelem Bousquet & Socios. - Genčev, M. (2011). Binomial sums involving harmonic numbers.
*Mathematica Slovaca*, 61(2), 215–226. - Jang, L.-C., Kim, D. S., Kim, T. & Lee, H. (2020).
*p*-adic integral on ℤassociated with degenerate Bernoulli polynomials of the second kind. Advances in Difference Equations, Article ID 278._{p} - Kim, T., Kim, D. S., Jang, L.-C., Lee, H. & Kim, H. (2022). Representations of degenerate Hermite polynomials.
*Advances in Applied Mathematics*, 139, Article ID 102359. - Kim, D. S., Kim, T., Lee, S. H., & Seo, J. J. (2014). Higher-order Daehee numbers and polynomials.
*International Journal of Mathematical Analysis*, 8(6), 273–283. - Kim, D. S., Kim, T., Kwon, J., Lee, S.-H., & Park, S. (2021). On
*λ*-linear functionals arising from*p*-adic integrals on ℤ._{p}*Advances in Continuous and Discrete Models*, 2021, Article ID 479. - Kim, T. (2007). A note on
*p*-adic*q*-integral on ℤassociated with_{p}*q*-Euler numbers.*Advanced Studies in Contemporary Mathematics*, 15, 133–137. - Kim, T. (2006). A note on some formulae for the q-Euler numbers and polynomials.
*Proceedings of the Jangjeon Mathematical Society*, 9(2), 227–232. - Kim, T. (2012). Lebesgue–Radon–Nikodym theorem with respect to fermionic
*p*-adic invariant measure on ℤ._{p}*Russian Journal of Mathematical Physics*, 19(2), 193–196. - Kim, T. (2016). On degenerate
*q*-Bernoulli polynomials.*Bulletin of the Korean Mathematical Society*, 53(4), 1149–1156. - Kim, T. (2002).
*q*-Volkenborn integration.*Russian Journal of Mathematical Physics*, 9(3), 288–299. - Kim, T. (2009). Some identities on the
*q*-Euler polynomials of higher order and*q*-Stirling numbers by the fermionic*p*-adic integral on ℤ._{p}*Russian Journal of Mathematical Physics*, 16(4), 484–491. - Lee, J. G., & Kwon, J. (2017). The modified degenerate
*q*-Bernoulli polynomials arising from*p*-adic invariant integral on ℤ. Advances in Difference Equations, 2017, Article ID 29._{p} - Ma, Y., Kim, T., Kim, D. S., & Lee, H. (2022). Study on
*q*-analogues of Catalan–Daehee numbers and polynomials.*Filomat*, 36(5), 1499–1506. - Ömür, N., & Bilgin, G. (2018). Some applications of the generalized hyperharmonic numbers of order .
*Advances and Applications in Mathematical Sciences*, 17(9), 617–627. - Ömür, N., Südemen, K. N., & Koparal, S.
*Some identities with special numbers*(submitted). - Park, J. W. (2015). On the q-analogue of
*λ*-Daehee polynomials.*Journal of Computational Analysis and Applications*, 19(6), 966–974. - Yun, S. J., & Park, J.-W. (2020). On fully degenerate Daehee numbers and polynomials of the second kind.
*Journal of Mathematics*, 2020, Article ID 7893498.

### Manuscript history

- Received: 16 March 2022
- Revised: 5 August 2022
- Accepted: 14 September 2022
- Online First: 27 September 2022

## Related papers

## Cite this paper

Ömür, N., Koparal, S., Duran, Ö. & Südemen, K. N. (2022). Identities involving some special numbers and polynomials on *p*-adic integral. *Notes on Number Theory and Discrete Mathematics*, 28(3), 564-574, DOI: 10.7546/nntdm.2022.28.3.564-574.