Fouad Bounebirat and Mourad Rahmani
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 3, Pages 533–541
DOI: 10.7546/nntdm.2022.28.3.533-541
Full paper (PDF, 174 Kb)
Details
Authors and affiliations
Fouad Bounebirat ![]()
Department of Mathematics, University of Boumerdes
Boumerdes 35000, Algeria
Mourad Rahmani
![]()
Faculty of Mathematics, USTHB
P. O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
Abstract
For a given prime p ≥ 5, let ℤp denote the set of rational p-integers (those rational numbers whose denominator is not divisible by p). In this paper, we establish some congruences modulo a prime power p5 on the hyper-sums of powers of integers in terms of Fermat quotient, Wolstenholme quotient, Bernoulli and Euler numbers.
Keywords
- Bernoulli numbers
- Congruence modulo a prime
- Fermat quotient
- Harmonic numbers
- Wolstenholme quotient
2020 Mathematics Subject Classification
- 11A07
- 11B68
- 11B83
References
- Glaisher, J. W. L. (1901). On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quarterly Journal of Mathematics, 32, 271–288.
- Graham, R. L., Knuth D. E., & Patashnik O. (1994). Concrete Mathematics.
Addison-Wesley Publishing Company, Reading, MA. - Hardy, G. H., & Wright E. M. (1979). An Introduction to the Theory of Numbers. Clarendon Press.
- Jacobson, N. (1985). Basic Algebra I. Second edition. W. H. Freeman and Company, New York.
- Laissaoui, D., Bounebirat, F., & Rahmani, M. (2017). On the hyper-sums of powers of integers. Miskolc Mathematical Notes, 18, 307–314.
- McIntosh, R. J. (1995). On the converse of Wolstenholme’s Theorem. Acta Arithmetica, 71, 381–389.
- Sun, Z-H. (2000). Congruences concerning Bernolli numbers and Bernoulli polynomials. Discrete Applied Mathematics, 105, 193–223.
- Sun, Z-H. (2008). Congruences involving Bernoulli and Euler numbers. Journal of Number Theory, 128, 280–312.
Manuscript history
- Received: 24 March 2021
- Revised: 5 August 2022
- Accepted: 9 August 2022
- Online First: 11 August 2022
Related papers
Cite this paper
Bounebirat, F., & Rahmani, M. (2022). Some congruences on the hyper-sums of powers of integers involving Fermat quotient and Bernoulli numbers. Notes on Number Theory and Discrete Mathematics, 28(3), 533-541, DOI: 10.7546/nntdm.2022.28.3.533-541.
