Suchita Arolkar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 3, Pages 491–499
DOI: 10.7546/nntdm.2022.28.3.491-499
Full paper (PDF, 167 Kb)
Details
Authors and affiliations
Suchita Arolkar
Department of Mathematics and Statistics,
Dnyanprassarak Mandal’s College and Research Centre
Assagao-Goa, 403 507, India
Abstract
In this paper, B-Tribonacci polynomials which are extensions of Fibonacci polynomials are defined. Some identities relating B-Tribonacci polynomials and their derivatives are established.
Keywords
- Fibonacci polynomials
- B-Tribonacci polynomials
- Derivative of B-Tribonacci polynomials
2020 Mathematics Subject Classification
- 11B39
- 11B83
- 26A24
References
- Arolkar, S., & Valaulikar, Y. S. (2016). h(x)-B-Tribonacci and h(x)-B-Tri Lucas
Polynomials. Kyungpook Mathematical Journal, 56(4), 1125–1133. - Bruschi, M. & Ricci, P. E. (1980). I polinomi di Lucas e di Tchebycheff in piu variabili. Rendiconti di Matematica e delle sue Applicazioni, 13, 507–529.
- Falcon, S., & Plaza, A. (2009). On k-Fibonacci sequences and polynomials and their derivatives. Chaos, Solitons & Fractals, 39(3), 1005–1019.
- Filipponi, P., & Horadam, A. F. (1991). Derivative sequences of Fibonacci and Lucas polynomials. In: Bergum, G. E., Philippou, A. N., Horadam, A. F. (eds) Applications of Fibonacci Numbers, Vol. 4. Springer, Dordrecht, 99–108.
- Lucas, É. (1891). Theorie des Nombres. Gauthier-Villars, Paris.
- Nalli, A., & Haukkanen, P. (2009). On generalized Fibonacci and Lucas polynomials. Chaos, Solitons & Fractals, 42(5), 3179–3186.
- Raghavacharyulu, I. V. V., & Tekumalla, A. R. (1972). Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321–324.
- Sloane, N. J. A. (2006). The On-Line Encyclopedia of Integer Sequences. The OEIS Foundation.
- Swamy, M. N. S. (1999). Generalized Fibonacci and Lucas polynomials, and their
associated diagonal polynomials. The Fibonacci Quarterly, 37(3), 213–222. - Wang, J. (1995). On the kth Derivative Sequences of Fibonacci and Lucas Polynomials. The Fibonacci Quarterly, 33(2), 174–178.
- Yu, H., & Liang, C. (1997). Identities involving partial derivatives of bivariate Fibonacci and Lucas polynomials. The Fibonacci Quarterly, 35(1), 19–23.
Manuscript history
- Received: 14 May 2022
- Revised: 31 July 2022
- Accepted: 3 August 2022
- Online First: 4 August 2022
Related papers
Cite this paper
Arolkar, S. (2022). On the derivatives of B-Tribonacci polynomials. Notes on Number Theory and Discrete Mathematics, 28(3), 491-499, DOI: 10.7546/nntdm.2022.28.3.491-499.