On the derivatives of B-Tribonacci polynomials

Suchita Arolkar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 3, Pages 491–499
DOI: 10.7546/nntdm.2022.28.3.491-499
Full paper (PDF, 167 Kb)

Details

Authors and affiliations

Suchita Arolkar
Department of Mathematics and Statistics,
Dnyanprassarak Mandal’s College and Research Centre
Assagao-Goa, 403 507, India

Abstract

In this paper, B-Tribonacci polynomials which are extensions of Fibonacci polynomials are defined. Some identities relating B-Tribonacci polynomials and their derivatives are established.

Keywords

  • Fibonacci polynomials
  • B-Tribonacci polynomials
  • Derivative of B-Tribonacci polynomials

2020 Mathematics Subject Classification

  • 11B39
  • 11B83
  • 26A24

References

  1. Arolkar, S., & Valaulikar, Y. S. (2016). h(x)-B-Tribonacci and h(x)-B-Tri Lucas
    Polynomials. Kyungpook Mathematical Journal, 56(4), 1125–1133.
  2. Bruschi, M. & Ricci, P. E. (1980). I polinomi di Lucas e di Tchebycheff in piu variabili. Rendiconti di Matematica e delle sue Applicazioni, 13, 507–529.
  3. Falcon, S., & Plaza, A. (2009). On k-Fibonacci sequences and polynomials and their derivatives. Chaos, Solitons & Fractals, 39(3), 1005–1019.
  4. Filipponi, P., & Horadam, A. F. (1991). Derivative sequences of Fibonacci and Lucas polynomials. In: Bergum, G. E., Philippou, A. N., Horadam, A. F. (eds) Applications of Fibonacci Numbers, Vol. 4. Springer, Dordrecht, 99–108.
  5. Lucas, É. (1891). Theorie des Nombres. Gauthier-Villars, Paris.
  6. Nalli, A., & Haukkanen, P. (2009). On generalized Fibonacci and Lucas polynomials. Chaos, Solitons & Fractals, 42(5), 3179–3186.
  7. Raghavacharyulu, I. V. V., & Tekumalla, A. R. (1972). Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321–324.
  8. Sloane, N. J. A. (2006). The On-Line Encyclopedia of Integer Sequences. The OEIS Foundation.
  9. Swamy, M. N. S. (1999). Generalized Fibonacci and Lucas polynomials, and their
    associated diagonal polynomials. The Fibonacci Quarterly, 37(3), 213–222.
  10. Wang, J. (1995). On the kth Derivative Sequences of Fibonacci and Lucas Polynomials. The Fibonacci Quarterly, 33(2), 174–178.
  11. Yu, H., & Liang, C. (1997). Identities involving partial derivatives of bivariate Fibonacci and Lucas polynomials. The Fibonacci Quarterly, 35(1), 19–23.

Manuscript history

  • Received: 14 May 2022
  • Revised: 31 July 2022
  • Accepted: 3 August 2022
  • Online First: 4 August 2022

Related papers

Cite this paper

Arolkar, S. (2022). On the derivatives of B-Tribonacci polynomials. Notes on Number Theory and Discrete Mathematics, 28(3), 491-499, DOI: 10.7546/nntdm.2022.28.3.491-499.

Comments are closed.