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1 Introduction

The Fibonacci sequence and polynomials play an important role in the enrichment of Fibonacci
theory. Various extensions of this sequence and polynomials are found in the literature, for
example [8]. In [6], Fibonacci and Lucas polynomials are generalized to introduce h(x)-Fibonacci
polynomials and h(x)-Lucas polynomials and properties of these polynomials are studied. It is to
be noted that the Catalan and Bryd Fibonacci polynomials are generalisations of h(x)-Fibonacci
polynomials. In [4], the authors have discussed derivative sequences of Fibonacci and Lucas
polynomials. The k-th derivative of sequences of polynomials of Fibonacci and Lucas polynomials
are discussed in [10]. Properties involving the second order partial derivative sequences of
Fibonacci and Lucas polynomials are established in [11]. Generalized Fibonacci and Lucas
polynomials, with their associated diagonal polynomials are found in [9]. In the same paper,
the author discusses associated polynomials like Lucas, Chebyshev, Fermat, Pell, and Jacobsthal
polynomials. The general results of Lucas polynomials with special values of the coefficients
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are found in [2, 5, 7]. In [3], properties of k-Fibonacci polynomials, which are extensions of
k-Fibonacci numbers, are studied.

In this paper, we establish some properties relating B-Tribonacci polynomials and their
derivatives. B-Tribonacci polynomials are extensions of k-Fibonacci polynomials discussed in
[3]. We first define B-Tribonacci polynomials.

Definition 1.1. Let x ∈ R and n ∈ Z. We denote by tn(x), in short, tn, the n-th B-Tribonacci
polynomial and let t0 = 0, t1 = 0, t2 = 1. Then B-Tribonacci polynomials, tn, are defined by

tn+2 = x2tn+1 + 2xtn + tn−1, (1)

where the coefficients x2, 2x, 1 of tn+1, tn, tn−1 respectively, are the terms of the expansion of
(x+ 1)2.

We list below few terms of (1):

t−1(x) = 1, t0(x) = 0, t1(x) = 0, t2(x) = 1, t3(x) = x2, t4(x) = x4 + 2x.

Note that B-Tribonacci polynomials can also be obtained from h(x)-B-Tribonacci polynomials
discussed in [1] by taking h(x) = x.

We list below some of the identities of B-Tribonacci polynomials.

(1) The generating function of (1), for n ≥ 0 is given by

G(z) =
z2

1− z(x+ z)2
. (2)

That is,
∞∑
n=0

tnz
n =

z2

1− z(x+ z)2
.

(2) The n-th term of (1) in combinatorial form is written as

tn =

b 2n−4
3
c∑

r=0

(
2n− 4− 2r

r

)
x2n−4−3r, n ≥ 2. (3)

Differentiating (3) w.r.t. x, we get

dtn
dx

=

b 2n−4
3
c∑

r=0

(2n− 4− 3r)

(
2n− 4− 2r

r

)
x2n−5−3r, n ≥ 2. (4)

2 Identities relating B-Tribonacci polynomials
and their derivatives

In this section, we prove some relations between B-Tribonacci polynomials and their derivatives.

Theorem 2.1. For n ≥ 0,[
dtn+1

dx
+ 2x

dtn−1
dx

+ 2
dtn−2
dx

]
= 2(n− 1)x tn + 2(n− 2) tn−1. (5)
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Proof. Clearly, the result holds for n = 0, 1, 2. Now, take n = 3m, then

t3m+1 + 2x t3m−1 + 2t3m−2

=
2m−1∑
r=0

(
6m− 2− 2r

r

)
x6m−2−3r + 2

2m−2∑
r=0

(
6m− 6− 2r

r

)
x6m−5−3r

+ 2
2m−3∑
r=0

(
6m− 8− 2r

r

)
x6m−8−3r

= x6m−2 + (6m− 2)x6m−5

+
2m−1∑
r=2

((
6m− 2− 2r

r

)
+ 2

(
6m− 4− 2r

r − 1

)
+ 2

(
6m− 4− 2r

r − 2

))
x6m−2−3r

= x6m−2 + (6m− 2)x6m−5 +
2m−1∑
r=2

((
6m− 2− 2r

r

)
+ 2

(
6m− 3− 2r

r − 1

))
x6m−2−3r

= x6m−2 +
2m−1∑
r=1

((
6m− 2− 2r

r

)
+ 2

(
6m− 3− 2r

r − 1

))
x6m−2−3r

= x6m−2 +
2m−1∑
r=1

6m− 2

r

(
6m− 3− 2r

r − 1

)
x6m−2−3r.

Now, differentiating both sides w.r.t. x, we get

dt3m+1

dx
+ 2x

dt3m−1
dx

+ 2
dt3m−2
dx

+ 2 t3m−1

= (6m− 2)x6m−3 +
2m−1∑
r=1

6m− 2

r
(6m− 2− 3r)

(
6m− 3− 2r

r − 1

)
x6m−3−3r

= (6m− 2)
2m−1∑
r=0

(
6m− 3− 2r

r

)
x6m−3−3r

= (6m− 2)

(
x

2m−1∑
r=0

(
6m− 4− 2r

r

)
x6m−4−3r +

2m−1∑
r=1

(
6m− 4− 2r

r − 1

)
x6m−3−3r

)

= (6m− 2)

(
x

2m−1∑
r=0

(
6m− 4− 2r

r

)
x6m−4−3r +

2m−2∑
r=0

(
6m− 6− 2r

r

)
x6m−6−3r

)
= (6m− 2)

(
x t3m + t3m−1

)
.

Therefore, we have

dt3m+1

dx
+ 2x

dt3m−1
dx

+ 2
dt3m−2
dx

= 2(3m− 1)x t3m + 2(3m− 2)t3m−1.

Similarly, the statement can be proved for n = 3m+ 1 and n = 3m+ 2.
Hence, the result follows by induction.

Theorem 2.2. For n ≥ 1,

dtn+2

dx
=

bn−1
3
c∑

r=0

4r
[
(2n− 6r) xtn+1−3r − (2n− 6− 6r) tn−3r

]
. (6)
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Proof. We prove the statement (6) by induction on n. For n = 1, 2, 3, (6) can be easily verified.
Assume that it is true for n ≤ m + 2 and m ≤ 3k − 1. We now prove that it holds for m = 3k.
Equation (1) implies,

dt3k+2

dx
= 2xt3k+1 + 2t3k + x2dt3k+1

dx
+ 2x

dt3k
dx

+
dt3k−1
dx

= 2xt3k+1 + 2t3k +
k−1∑
r=0

4r
[
(6k − 2− 6r) x3t3k−3r − (6k − 8− 6r) x2t3k−1−3r

]
+

k−1∑
r=0

4r
[
(6k − 4− 6r) 2x2t3k−1−3r − (6k − 10− 6r) 2xt3k−2−3r

]
+

k−1∑
r=0

4r
[
(6k − 6− 6r) xt3k−2−3r − (6k − 12− 6r) t3k−3−3r

]
= 2x3t3k + 6x2t3k−1 + 6xt3k−2 + 2t3k−3

+
k∑

r=0

4r
[
(6k − 6r)xt3k+1−3r − (6k − 6− 6r)t3k−3r

]
+

k−1∑
r=0

4r
[
− 2x3t3k−3r − 6x2t3k−1−3r + 2xt3k−2−3r + 6t3k−3−3r

]
=

k∑
r=0

4r
[
(6k − 6r)xt3k+1−3r − (6k − 6− 6r)t3k−3r

]
+ 8xt3k−2 + 8t3k−3

+
k−1∑
r=1

4r
[
− 2x3t3k−3r − 6x2t3k−1−3r + 2xt3k−2−3r + 6t3k−3−3r

]
=

k∑
r=0

4r
[
(6k − 6r)xt3k+1−3r − (6k − 6− 6r)t3k−3r

]
+ 4(2x3t3k−3 + 6x2t3k−4 + 6xt3k−5 + 2t3k−6)

+
k−1∑
r=1

4r
[
− 2x3t3k−3r − 6x2t3k−1−3r + 2xt3k−2−3r + 6t3k−3−3r

]
.

Hence, further simplification leads to the following conclusion.

dt3k+2

dx
=

k∑
r=0

4r
[
(6k − 6r)xt3k+1−3r − (6k − 6− 6r)t3k−3r

]
+ 4(k−1)

[
2x3t3 + 6x2t2 + 6xt1 + 2t0

]
+ 4(k−1)

[
− 2x3t3 − 6x2t2 + 2xt1 + 6t0

]
=

k∑
r=0

4r
[
(6k − 6r)xt3k+1−3r − (6k − 6− 6r)t3k−3r

]
.

Therefore, the result holds for m = 3k. Similarly, the theorem can be proved for m = 3k+1 and
m = 3k + 2.
Hence, the statement is true for n = m+ 3. Thus, the result is proved.
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Theorem 2.3. For all n ≥ 0,

dtn
dx

= 2x
n+1∑
r=0

trtn+1−r + 2
n∑

r=0

trtn−r. (7)

Proof. The generating function of (1) is

G(z) =
z2

1− z(x+ z)2
.

Therefore,
∞∑
n=0

tnz
n =

z2

1− z(x+ z)2
.

Differentiating both sides with respect to x, we get
∞∑
n=0

dtn
dx

zn =
2z3(x+ z)

[1− z(x+ z)2]2

= 2z(x+ z)
∞∑
n=0

( n∑
r=0

tr tn−r

)
zn−2

=
∞∑
n=0

(
2x

n∑
r=0

tr tn−r

)
zn−1 +

∞∑
n=0

(
2

n∑
r=0

tr tn−r

)
zn.

Comparing the coefficient of zn, we have

dtn
dx

= 2x
n+1∑
r=0

trtn+1−r + 2
n∑

r=0

trtn−r.

This completes the proof.

Theorem 2.4. For all n, r ≥ 0,

drtn+2

dxr
=



0, r > 2n,

(2n)!, r = 2n,

1
(n−2r)

[
n(x2)d

rtn+1

dxr + n(2x)d
rtn
dxr + (n+ r)d

rtn−1

dxr

−nr(r − 1)d
r−2tn+1

dxr−2 − r dr(x2tn+1)
dxr

]
, r < 2n.

(8)

Proof. We prove (8) using induction on r.
Note that

(n− 2)
dtn+2

dx
= (n− 1)

dtn+2

dx
− dtn+2

dx

= (n− 1)
[
(2x tn+1 + 2 tn) + x2dtn+1

dx
+ 2x

dtn
dx

+
dtn−1
dx

]
− dtn+2

dx

=
dtn+2

dx
+ 2x

dtn
dx

+ 2
dtn−1
dx
− 2x tn+1

+ (n− 1)x2dtn+1

dx
+ (n− 1)2x

dtn
dx

+ (n− 1)
dtn−1
dx
− dtn+2

dx

= (n− 1)x2dtn+1

dx
+ n(2x)

dtn
dx

+ (n+ 1)
dtn−1
dx
− 2x tn−1

= nx2dtn+1

dx
+ n(2x)

dtn
dx

+ (n+ 1)
dtn−1
dx
− d

dx

(
x2tn+1

)
.
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Hence, the statement is true for r = 1. We shall assume that the statement holds for r = k.
Therefore, we have

dktn+2

dxk
=

1

(n− 2k)

[
n(x2)

dktn+1

dxk
+ n(2x)

dktn
dxk

+ (n+ k)
dktn−1
dxk

−nk(k − 1)
dk−2tn+1

dxk−2 − k
dk(x2tn+1)

dxk

]
.

Now,

(n− 2k)
dk+1tn+2

dxk+1
=
[
n(x2)

dk+1tn+1

dxk+1
+ n(2x)

dk+1tn
dxk+1

+ (n+ k)
dk+!tn−1
dxk+!

−nk(k − 1)
dk−2tn+1

dxk−2 − k
dk+1(x2tn+1)

dxk+1
+ n(2x)

dktn+1

dxk
+ 2n

dktn
dxk

]
.

Also, differentiating (1), (k + 1) times w.r.t. x and using Leibniz theorem, we get

dk+1tn+2

dxk+1
− x2d

k+1tn+1

dxk+1
− 2x

dk+1tn
dxk+1

− dk+1tn−1
dxk+1

− (k + 1)k
dk−2tn+1

dxk−2

= (k + 1)
[
(2x)

dktn+1

dxk
+ 2

dktn
dxk

]
.

Therefore,

(k + 1)(n− 2k)
dk+1tn+2

dxk+1

=
[
(k + 1)n(x2)

dk+1tn+1

dxk+1
+ (k + 1)n(2x)

dk+1tn
dxk+1

+ (k + 1)(n+ k)
dk+1tn−1
dxk+1

− nk(k − 1)(k + 1)
dk−2tn+1

dxk−2 − k(k + 1)
dk+1(x2tn+1)

dxk+1

+ n
(dk+1tn+2

dxk+1
− x2d

k+1tn+1

dxk+1
− 2x

dk+1tn
dxk+1

− dk+1tn−1
dxk+1

− (k + 1)k
dk−2tn+1

dxk−2

)]
.

Hence(
(k + 1)(n− 2k)− n

)dk+1tn+2

dxk+1
=
[
kn (x2)

dk+1tn+1

dxk+1
+ kn (2x)

dk+1tn
dxk+1

+ k(n+ k + 1)
dk+1tn−1
dxk+1

− n(k + 1)k2 dk−2tn+1

dxk−2

− (k + 1)k
dk+1(x2tn+1)

dxk+1

]
Thus(

n− 2(k + 1)
)dk+1tn+2

dxk+1
=
[
n (x2)

dk+1tn+1

dxk+1
+ n (2x)

dk+1tn
dxk+1

+ (n+ k + 1)
dk+1tn−1
dxk+1

− n(k + 1)k
dk−2tn+1

dxk−2 − (k + 1)
dk+1(x2tn+1)

dxk+1

]
.

Hence, the result.

Theorem 2.5. For n ≥ 0,

(x4 + 8x)
dtn
dx

+ 4
dtn−1
dx

− dtn−4
dx

= 2nxtn+1 + 2(n− 3− 2x3)tn (9)

+ 4x2(n− 2)tn−1 + 4x(n− 1)tn−2 + 4tn−3.
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Proof. Consider,

tn+2 + 2xtn + 2tn−1 + 2x
(
tn + 2x tn−2 + 2tn−3

)
= (x4 + 8x)tn + 4tn−1 − tn−4.

Differentiating both sides w.r.t. x, we get

(x4 + 8x)
dtn
dx

+ (4x3 + 8)tn + 4
dtn−1
dx

− dtn−4
dx

=
[dtn+2

dx
+ 2x

dtn
dx

+ 2
dtn−1
dx

]
+ 2x

[dtn
dx

+ 2x
dtn−2
dx

+ 2
dtn−3
dx

]
+ 2(2tn + 2xtn−2 + 2tn−3).

Therefore,

(x4 + 8x)
dtn
dx

+ (4x3 + 8)tn + 4
dtn−1
dx

− dtn−4
dx

= 2(n)x tn+1 + 2(n− 1) tn−1 + 2x
(
2(n− 2)x tn−1 + 2(n− 3) tn−2

)
+ 2(2tn + 2xtn−2 + 2tn−3).

Hence, we conclude

(x4 + 8x)
dtn
dx

+ 4
dtn−1
dx

− dtn−4
dx

= 2nxtn+1 + 2(n− 3− 2x3)tn + 4x2(n− 2)tn−1 + 4x(n− 1)tn−2 + 4tn−3.

Theorem 2.6. For all n ≥ 0,

x
dtn+1

dx
+ 3

dtn
dx

= 2(n− 1) tn+1. (10)

Proof. Note that for n = 0, 1, 2, the result holds. Now, take n = 3m, then LHS of (10), implies

x
dt3m+1

dx
+ 3

dt3m
dx

=
2m−1∑
r=0

(6m− 2− 3r)

(
6m− 2− 2r

r

)
x6m−2−3r

+ 3
2m−2∑
r=0

(6m− 4− 3r)

(
6m− 4− 2r

r

)
x6m−5−3r.

= (6m− 2) x6m−2 +
2m−1∑
r=1

(6m− 2− 3r)

(
6m− 2− 2r

r

)
x6m−2−3r

+ 3
2m−1∑
r=1

(6m− 1− 3r)

(
6m− 2− 2r

r − 1

)
x6m−2−3r.

After further simplifications, we get

x
dt3m+1

dx
+ 3

dt3m
dx

= (6m− 2)
2m−1∑
r=0

(
6m− 2− 2r

r

)
x6m−2−3r

= 2(3m− 1) t3m+1.

Similarly, the statement can be proved for n = 3m+1 and n = 3m+2. Hence, by induction the
theorem is proved.
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Theorem 2.7. For all n ≥ 0,

dtn
dx

= ntn+1 −
n+3∑
r=0

trtn+3−r. (11)

Proof. We prove the statement by induction on n. For n = 0, 1, 2, clearly, the statement holds.
Assume that statement (11) is true for n ≤ k, so we have

dtk
dx

= ktk+1 −
k+3∑
r=0

trtk+3−r.

Next, for n = k + 1, we have

dtk+1

dx
= x2dtk

dx
+ 2x

dtk−1
dx

+
dtk−2
dx

+ 2x tk + 2 tk−1

= x2
(
ktk+1 −

k+3∑
r=0

trtk+3−r

)
+ 2x

(
(k − 1)tk −

k+2∑
r=0

trtk+2−r

)
+ (k − 2)tk−1 −

k+1∑
r=0

trtk+1−r + 2x tk + 2 tk−1.

= (k + 1)tk+2 −
k+4∑
r=0

trtk+4−r.

Hence, by induction the result follows.

3 Conclusion

In this paper B-Tribonacci polynomials are defined. Generating function and combinatorial
representation are obtained. Identities relating B-Tribonacci polynomials with their derivatives
are established.
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