Engin Özkan and Mine Uysal
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 2, Pages 318–330
DOI: 10.7546/nntdm.2022.28.2.318-330
Full paper (PDF, 344 Kb)
Details
Authors and affiliations
Engin Özkan
![]()
Department of Mathematics, Faculty of Arts and Sciences,
Erzincan Binali Yıldırım University, Erzincan, Turkey
Mine Uysal
![]()
Graduate School of Natural and Applied Sciences,
Erzincan Binali Yıldırım University, Erzincan, Turkey
Abstract
In this work, we investigate the hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. We give Binet’s Formula, Cassini’s identity, Catalan’s identity, d’Ocagne identity, generating functions of the hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Also, we present many properties of these octonions.
Keywords
- Hyperbolic k-Jacobsthal octonions
- Hyperbolic k-Jacobsthal–Lucas octonions
- Binet formula
- Cassini identity
- Catalan identity
2020 Mathematics Subject Classification
- 11B39
- 11B37
References
- Aküzüm, Y., & Deveci, Ö. (2017). On the Jacobsthal–Padovan p-Sequences in Groups. Topological Algebra and Its Applications, 5, 63–66.
- Cariow, A., & Cariowa, G. (2015). A unified approach for developing rationalized
algorithms for hypercomplex number multiplication. Electric Review, 91(2), 36–39. - Cariow, A., Cariowa, G., & Knapinski, J. (2015). Derivation of a low multiplicative complexity algorithm for multiplying hyperbolic octonions. arXiv. https://arxiv.org/abs/1502.06250
- Catarino, P., Vasco, P., Campos, H., Aires, A. P., & Borges, A. (2015). New families of Jacobsthal and Jacobsthal–Lucas numbers. Algebra and Discrete Mathematics, 20(1), 40–54.
- Çelik, S., Durukan, İ., & Özkan, E. (2021). New Recurrences on Pell Numbers, Pell–Lucas Numbers, Jacobsthal Numbers and Jacobsthal–Lucas Numbers. Chaos, Solitons and Fractals, 150, Article ID 111173.
- Dikici, R., & Özkan, E. (2003). An Application of Fibonacci Sequences in Groups. Applied Mathematics and Computation, 136(2–3), 323–331.
- Erdağ, Ö., & Deveci, Ö. (2021). The Representation and Finite Sums of the Padovan-p Jacobsthal Numbers. Turkish Journal of Science, 6(3), 134–141.
- Filipponi, P., & Horadam, A. F. (1999). Integration sequences of Jacobsthal and
Jacobsthal–Lucas Polynomials. In Fredric T Howard (ed.), Applications of Fibonacci Numbers, 8, 129–139. - Godase A. D., (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Godase, A. D. (2021). Hyperbolic k-Fibonacci and k-Lucas Quaternions. The Mathematıcs Student, 90(1-2), 103–116.
- Hamilton, W. R. (1866). Elements of Quaternions. London. Longman. Green & Company.
- Hoggatt, V. E. Jr. (1969). Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin.
- Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly, 70(3), 289–291.
- Jhala, D., Sisodiya, K., & Rathore, G. P. S. (2013). On some identities for k-Jacobsthal numbers. International Journal of Mathematical Analysis, 7(12), 551–556.
- Kılıç, E., Ulutas, Y. T., & Ömür, N. (2011). Sums of products of the terms of the
generalized Lucas sequence {Vkn}. Hacettepe Journal of Mathematics and Statistics, 40(2), 147–161. - Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. Wiley-Interscience Publishing, Canada.330
- Kuloğlu, B., & Özkan, E., Hyperbolic functions obtained from k-Jacobsthal sequences. Asian-European Journal of Mathematics, 22501789, DOI: 10.1142/S1793557122501789.
- Macfarlane, A. (1900). Hyperbolic quaternions. Proceedings of the Royal Society of Edinburgh, 23, 169–180.
- Özkan, E., Altun, İ., & Göçer, A. (2017) On relationship among a new family of
k-Fibonacci, k-Lucas numbers, Fibonacci and Lucas numbers. Chiang Mai Journal of Science, 44(4), 1744–1750. - Özkan, E., Uysal, M., & Godase, A. D. (2021). Hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas quaternions. Indian Journal of Pure and Applied Mathematics, DOI: 10.1007/s13226-021-00202-9.
- Szynal-Liana, A., & Włoch, I. (2016). A note on Jacobsthal quaternions. Advances in Applied Clifford Algebras, 26(1), 441–447.
- Uygun, Ş., & Eldogan, H. (2016). Properties of k-Jacobsthal and k-Jacobsthal Lucas sequences. General Mathematics Notes, 36(1), 34–47.
Manuscript history
- Received: 2 February 2022
- Revised: 9 May 2022
- Accepted: 7 June 2022
- Online First: 10 June 2022
Related papers
- Godase A. D., (2020). Hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 26(3), 176–188.
- Godase, A. D. (2024). Some new properties of hyperbolic k-Fibonacci and k-Lucas octonions. Notes on Number Theory and Discrete Mathematics, 30(1), 100-110.
Cite this paper
Özkan, E., & Uysal, M. (2022). On hyperbolic k-Jacobsthal and k-Jacobsthal–Lucas octonions. Notes on Number Theory and Discrete Mathematics, 28(2), 318-330, DOI: 10.7546/nntdm.2022.28.2.318-330.
