Alessandro Cotronei
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 2, Pages 147–158
DOI: 10.7546/nntdm.2022.28.2.147-158
Full paper (PDF, 282 Kb)
Details
Authors and affiliations
Alessandro Cotronei
Department of Mathematics and Statistics, University of Tromsø
N-9037 Tromsø, Norway
Abstract
We describe and compare several novel sieve-like methods. They assign values of several functions (i.e., the prime omega functions ω and Ω and the divisor function d) to each natural number in the considered range of integer numbers. We prove that in some cases the algorithms presented have a relatively small computational complexity. A more detailed output is indeed obtained with respect to the original Sieve of Eratosthenes.
Keywords
- Sieve theory
- Sieve of Eratosthenes
2020 Mathematics Subject Classification
- 11N35
- 11N36
References
- Abramowitz, M., & Stegun, I. A. (1970). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York.
- Apostol, T. (1976). Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag.
- Atkins, A. O. L., & Bernstein, J. (2004). Prime Sieves using Binary Quadratic Forms. Mathematics of Computation, 73(246), 1023–1030.
- Cox, D. N. (2008). Visualizing the Sieve of Eratosthenes. Notices of the American Mathematical Society, 55(5), 579–582.
- Da Costa, C. M. C., Sampaio, A., & Barbosa, J. G. (2014). Distributed Prime Sieve in Heterogeneous Computer Clusters. Proceedings of the 14th International Conference on Computational Science and Its Applications, Lecture Notes in Computer Science, Vol. 8582. Springer, Cham, 592–606.
- De Saint Guilhem, C. D., Makri, E., Rotaru, D., & Tanguy, T. (2021). The Return of Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving. Proceedings of 2021 ACM SIGSAC Conference on Computer and Communications Security, 594–609.
- Gronwall, T. H. (1913). Some asymptotic expressions in the theory of numbers.
Transactions of the American Mathematical Society, 14, 113–122. - Hardy, G. H., & Wright, E. M. (2006). An Introduction to the Theory of Numbers, 6th edition. Oxford University Press.
- Hinz, J. G. (2003). An application of algebraic sieve theory. Archiv der Mathematik, 80, 586–599.
- Li, B., Maltese, G., Costa-Filho, J. I., Pushkina, A. A., & Lvovsky, A. I. (2020). Optical Eratosthenes’ sieve for large prime numbers. Optics Express, 28(8), 11965–11973.
- Nathanson, M. B. (2000). Elementary Methods in Number Theory. Springer-Verlag, New York.
- Sorenson, J. (1990). An Introduction to Prime Number Sieves, Computer Sciences Technical Report N. 909, Department of Computer Sciences, University of Wisconsin-Madison, January 2, 1990.
- Tytus, J. B. (2004). The Random Sieve of Eratosthenes, Science Direct Working Paper No S1574-0358(04)70421-9.
- Ufuoma, O. (2019). A New and Simple Prime Sieving Technique for Generating Primes Ending with a Given Odd Digit. Asian Research Journal of Mathematics, 15(5), 1–11.
- Weisstein, Eric W. Distinct Prime Factors. From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/DistinctPrimeFactors.html
Manuscript history
- Received: 9 November 2021
- Revised: 17 February 2022
- Accepted: 9 March 2022
- Online First: 23 March 2022
Related papers
Cite this paper
Cotronei, A. (2022). On wide-output sieves. Notes on Number Theory and Discrete Mathematics, 28(2), 147-158, DOI: 10.7546/nntdm.2022.28.2.147-158.