
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
2022, Volume 28, Number 2, Pages 147–158
DOI: 10.7546/nntdm.2022.28.2.147-158

On wide-output sieves

Alessandro Cotronei
Department of Mathematics and Statistics,

University of Tromsø
N-9037 Tromsø, Norway

e-mail: a.cotronei@uit.no

Received: 9 November 2021 Revised: 17 February 2022

Accepted: 9 March 2022 Online First: 23 March 2022

Abstract: We describe and compare several novel sieve-like methods. They assign values of
several functions (i.e., the prime omega functions ω and Ω and the divisor function d) to each
natural number in the considered range of integer numbers. We prove that in some cases the
algorithms presented have a relatively small computational complexity. A more detailed output
is indeed obtained with respect to the original Sieve of Eratosthenes.
Keywords: Sieve theory, Sieve of Eratosthenes.
2020 Mathematics Subject Classification: 11N35, 11N36.

1 Introduction

Sieve theory is one of the most used way to find primes since the third century B.C.E. Despite
faster methods and modifications are available [3, 9, 14], this old method is still in wide use
today because of the simplicity of its implementation. Howevere there is a relevant downside in
particular from its use: the big number of repeated operations.

We will start by showing an algorithm that solves this problem and introduce several novel
ways of sieving natural numbers with a wider output (hence the title). We will show also several
other algorithms that work in a similar way.

Sections of this paper are organized with respect to the output for each algorithm. We refer to
the original sieve in the following form (Algorithm 1), that uses O(n log log n) basic operations
(i.e., additions) and O(n) bits of storage [12].

147

Algorithm 1 Sieve of Eratosthenes

1: Input: n.
2: Consider an array of natural numbers 1, 2, . . . , n− 1, n.
3: p← 2.
4: while p ≤

√
n do

5: Mark the lowest unmarked number of the list p (2 in the first case) as prime.
6: for i multiple of p not exceeding n do
7: Mark i Composite. . Alternatively cancel out i.

8: Output: Characteristic Prime function or equivalently, all prime numbers ≤ n.

We discuss several characteristics for n = pa11 p
a2
2 · · · p

ak
k with pi distinct primes [8]:

• the little omega prime function ω(n) = k. ω(1) = 0;

• the big omega prime function Ω(n) = a1 + a2 + · · ·+ ak. Ω(1) = 0;

• the divisor function d(n) = (a1 + 1)(a2 + 1) · · · (ak + 1). d(1) = 0.

We make also use of several other functions as the prime counting functions π(x) and the
generalized prime counting function π∗k(x), defined as the number of prime numbers ≤ x

(respectively, positive integers ≤ x that can be written as product of not necessarily distinct
of k prime numbers) [11]. We use some theorems as the Prime Number Theorem in the form:
π(x) = O

(
x

log x

)
, and a generalization in the form: π∗k(n) = O

(
x(log log x)k−1

(k−1)! log x

)
[11].

We also make use of Abel’s Identity [11]:∑
y≤x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt,

where A(x) = 0 if x < 1, f has continuous derivative over the considered interval and A(x) =∑
n≤x a(n).
We give several estimates in terms of the big O notation [11] for computational complexity

and bit use (memory consumption) for the algorithms.
We split this paper in three sections, each of them describes algorithms with a different

function (respectively, ω, Ω, d) as output.

2 Method with output ω

2.1 First method

The first method uses a slight modification in the original sieve to evaluate the funcion ω(n)

for each number in an interval of consecutive natural numbers that includes 1. It has the same
computational cost with the algorithm from which it derives (if we consider the addition step
as expensive as the canceling out step of the original algorithm). At the same time, the memory
required for the implementation is higher because the algorithm stores integer numbers
(corresponding to the ω function) instead of logical values (sometimes zeroes and ones). This
will be true for each algorithm we present.

148

We want to remark that this algorithm does not discard the repeated operations of canceling
out as in the original Sieve of Eratosthenes:

Algorithm 2 Modified Sieve of Eratosthenes 1 (With output ω)

1: Input: n.
2: Consider an array with indices in the natural numbers 2, 3, . . . , n−1, n and an array of natural

numbers and size n, we call this A.
3: a← 0.
4: while p ≤

√
n do

5: Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.
6: for i multiple of p not exceeding n do
7: a(i)← a(i) + 1.

8: Output: A ≡ ω ∀l ∈ {1, 2, . . . , n}.

It is clear that at the end of the algorithm the array a is coinciding with the function ω because
every number of the array is increased by one (instead of being marked as true or false or canceled
like in the original sieve) for each prime number lower or equal.

This method still usesO(n log log n) additions as it does not contain modification with respect
to the original algorithm, but a bigger amount of memory has to be assigned. We have to store

ω(k) ∀i ∈ 1, 2, . . . , n so the required maximum amount is n
⌈

log2

(
max
1≤k≤n

ω(k)

)⌉
that can be

bounded by O
(
n log

(
log(n)

log log(n)

))
where we have used the fact that ω(n) is at most O

(
log(n)
log logn

)
,

[15].
If we assume that that memory allocation is without unused bits for each stored value, then the

number of bits used is:
n∑

k=2

dlog2 (ω(k))e. It is not our interest to give a more precise estimate for

this quantity since an actual implementation of the corresponding method would not be practical.

3 Methods with output Ω

3.1 Second method

In this procedure, we determine for each number the corresponding Ω function by multiplying
numbers with known Ω for prime numbers (so that the Omega value is increased by one by this
procedure). We mainly work with intervals of natural numbers between consecutive powers of
two. We call these sets In:

Definition 3.1 (In). We define the set In as {2n, 2n + 1, . . . , 2n+1 − 2, 2n+1 − 1} or equivalently
{x ∈ N : 2n ≤ x < 2n+1 − 1}.

Remark 3.1. It is obvious that a ∈ In ⇐⇒ blog2 ac = n. Hence in particular I0 = {1},
I1 = {2, 3}.

149

The following proposition gives a hint on how multiplied numbers between intervals behave:

Proposition 3.1. If m ∈ Iq and n ∈ Ir, then mn ∈ Iq+r ∪ Iq+r+1.

Proof. From the Hypotheses, we have 2q ≤ m < 2q+1 and 2r ≤ n < 2r+1. If follows that
2q+r ≤ mn < 2q+r+2 and the latter is equivalent to the thesis.

We will use the following Lemma to obtain numbers with m prime factors:

Lemma 3.1 (Main Lemma for Method 2). If m ∈ Ir, m has k prime factors (k ≤ r) and
q = Q(r, k), one of the following two statements holds:

• there exists a prime number in p ∈ Is, s ≤ q and a number with k−1 prime factors t ∈ Ir−s
such that pt = m;

• there exists a prime number in p ∈ Is, s ≤ q and a number with k − 1 prime factors
t ∈ Ir−s−1 such that pt = m.

Proof. Let m ∈ Ir, m with k prime factors (2 ≤ k ≤ r) and let q = Q(r, k).
We want to prove first that it has at least a prime factor p ∈ Is, s ≤ q. First of all we

have that l = max{p prime : p ≤ 2
r+1
k }, in particular we have p ≤ 2

r+1
k and if we take

p̄ = min{s prime, s > p}, we have from the definition of p, p̄ > 2
r+1
k . If by absurd the smallest

prime of m is p̄, we have m = p1 · . . . · pk ≥ p̄k > 2
r+1
k
·k = 2r+1. We have obtained an absurd

since m would not belong anymore to the interval of the Hypotheses.
To prove the remaining part of the Lemma, we first notice that if we use the Fundamental

Theorem of Arithmetic, it is obvious that if pt = m, then t must have exactly k− 1 prime factors.
The final part of the lemma follows from Proposition 3.1.

We have also the following definition:

Definition 3.2 (Q function). Let m,n ∈ N, we define the function Q(m,n) as follows: let
l = max{p prime : p ≤ 2

m+1
n }, then there exists unique r ∈ N such that l ∈ Ir, we define

Q(m,n) := r or equivalently (Remark 3.1) Q(m,n) := blog2 lc.

We can now enunciate the following Algorithm 3:

Algorithm 3 Sieve-like method (with output Ω)

1: Input: n.
2: Consider a vector B of size 2n+1.
3: for i=1 to n do
4: for j=i-1 to 2 do . This step must be skipped for i = 1.
5: r ← Q(i, j).
6: for k=1 to r do
7: For each p prime in Ik and for each t with j−1 factors in Ii−k, store pt as number

with j factors. . Result is in Ii or Ii+1.

8: Store all remaining number in the interval Ii as primes.

9: Output: B ≡ Ω for all numbers < 2n and some numbers m: 2n ≤ m < 2n+1.

150

If we assume that step 7 takes only one operation as set multiplication, the computational
complexity is in the same order of magnitude with respect to:

n∑
i=2

2∑
j=i−1

1 +

b i+1
j c∑

k=1

1 ∼
n∑

i=2

2∑
j=i−1

(
1 +

i+ 1

j

)

≤
n∑

i=2

(i− 2 + (i+ 1) log(i))

= O(n2 log n),

where we used again Abel’s summation formula to evaluate the last sum.
This computational cost is very convenient, since the algorithm assigns the function ω to

all the numbers between 1 and 2n. In practical configurations, the implementation could be
much more expensive since set multiplication could be not feasable for regular computers. If we
consider Prime Number Theorem and its generalization concerning π∗k(x) (see the Introduction)
to estimate roughly the number of prime numbers and numbers with distinct prime factors in the
proper intervals (in particular we estimate the prime numbers in Ik by approximating them by
π(2k+1)− π(2k) and numbers with j − i prime factors in Ii−k in a similar way), we obtain:

n∑
i=2

2∑
j=i−1

1 +

b i+1
j c∑

k=1

2i(k − 1)

(log 2)2(k2 + k)(j − 2)!

(
(log log 2i−k+1)j−2

i− k + 1
− (log log 2i−k)j−2

i− k

)
.

Having this sum really difficult to evaluate, we estimate a bigger sum with the use of several
majorizations:

n∑
i=2

2∑
j=i−1

1 +

b i+1
j c∑

k=1

2i(k − 1)

(log 2)2(k2 + k)(j − 2)!

(
(log log 2i−k+1)j−2

i− k + 1

)

∼
n∑

i=2

i−1∑
j=2

1 +
2i

(log 2)2(j − 2)!

b i+1
j c∑

k=1

1

ki
(log(i log 2))j−2

∼
n∑

i=2

i−1∑
j=2

1 +
2i

(log 2)2(j − 2)!

b i+1
j c∑

k=1

1

ki
(log i)j−2

∗∼
n∑

i=2

(
(i− 2) +

2i

i

i−1∑
j=2

(log i)j−2

(j − 2)!
(log(i+ 1)− log j)

)
∗∗∼

n∑
i=2

(
(i− 2) +

2i

i

i−1∑
j=2

(log i)j−1

(j − 2)!

)

∼
n∑

i=2

(
i− 2 + 2i

)
= O(2n+1),

we have used in particular, among other formulas, the logarithmic approximation of the harmonic
series (*, see [11]) and Taylor expansion for the function ex (**, see [1]).

151

We want to remark that if we considerm = 2n, the computational complexities are respectively
O
(
(log2m)2 log log2m

)
, or equivalently O

(
(logm)2 log logm

)
and O(2m), those amounts are

smaller than the corresponding complexities in the Sieve of Eratosthenes. However this algorithm
uses more multiplications, that can be more intrinsically expensive then additions, as used in the
original sieve.

The memory consumption is given by the sum of the memory consumption for storing the
values of Ω and, conveniently, the number of the interval interval In for each number. Both of
these values can be approximated by 2n+1 log2(n + 1), i.e., the number of numbers to be stored
times the maximum number of bits needed to store the corresponding Ω function (respectively,
the interval), at most n+ 1, see Proposition 3.4 (respectively, Remark 3.1).

The overall memory consumption is therefore proportional toO(2n+1 log(n+1)). Again if we
consider m = 2n, the overall memory consumptions are proportional to O (m log (1 + log2m))

and O (m log logm).
A few properties can make the implementation of the algorithm even more efficient. We

suggest some of them, but other ideas could go in the direction of using the additional Ω values
in the biggest interval computed by the algorithm to evaluate the function in the whole interval or
avoiding redundant calculations by checking the range of the operations before they are performed:

Proposition 3.2. If m+ 1 ≤ 2n, then Q(m,n) = 1.

From the hyphothesis we have
m+ 1

n
≤ 2 and 2

m+1
n ≤ 22 = 4.

Therefore l = max{p prime : p ≤ 2
m+1
n ≤ 4} can contain only the primes 2 and 3, both

belonging to I1. We have reached the thesis.

The following proposition is a generalization of the previous one and can be proved similarly.

Proposition 3.3. If m+ 1 ≤ n(t+ 1) then Q(m,n) ≤ t.

This proposition can avoid some calculations for the numbers with n not necessarily distinct
factors in In:

Proposition 3.4. Each set In contains exactly 2 numbers with n prime factors (numbers m such
that Ω(m) = n), namely 2n and 2n−1 · 3. The same set In contains no numbers with at least n+ 1

prime factors.

Proof. By use of the Fundamental Theorem of Arithmetic we notice that 2n is the smallest
number with the required characteristics because the existence of a smaller number with this
properties would imply the existence of a prime number smaller than 2.

If we now notice that 2n−1 · 3 is another number with the required number of factors in the
correct interval, we must prove that the interval cannot contain numbers with factors bigger than
3 repeated more then once and factors bigger than 5. But this is a consequence of the following
inequalities that consider pi, i ∈ {1, . . . , n} as (not necessarily distinct) prime numbers:

p1 · p2 · . . . · pn ≥ 2n−2 · 3 · 3
= 2n−2 · 9 > 2n−2 · 8 = 2n+1,

p1 · p2 · . . . · pn ≥ 2n−1 · 5 > 2n−2 · 4
= 2n.

152

We now give some tables that show some data on how numbers are repetedly counted as output
of the algorithm (as 12 = 2 · 6 = 3 · 4, where both 2 and 3 are indeed in I1). In particular, Table 1
shows some numbers with repeated output, together with number of repetitions and corresponding
Ω, Figure 1 shows graphically the number of repetitions in the output for numbers up to 2000.

Numbers with repeated output 12 18 24 30 36 42 45 48 50 54 60 63

Number of repetitions 2 2 2 2 2 2 2 2 2 2 2 2

Corresponding Ω 3 3 4 3 4 3 3 5 3 4 4 3

66 70 72 75 78 84 90 96 98 102 105 108 110 114 120 126 130

2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2

3 3 5 3 3 4 4 6 3 3 3 5 3 3 5 4 3

Table 1. Repeated output from Algorithm 2

Figure 1. Number of times that n is output of Algorithm 2

Table 2 shows the smallest numbers with number repetitions between 1 and 6. For reference
in the original Sieve of Eratosthenes, the smallest numbers are given by the primorial numbers(∏

p≤x

p

)
and are smaller than the considered number for this algorithm.

153

Smallest number with higher number of repetitions Number of repetitions Corresponding Ω

2 1 1

12 2 3

70 3 3

1050 4 5

182490 5 6

1771770 6 7

Table 2. Smallest numbers with amount of repetitions from Algorithm 2

3.2 Third and fourth method

In this section we describe some modifications of Eratosthenes’ method that rely on the calculation
of the number of prime divisors for each number in the interval 1, . . . , n. The output is again the
function Ω:

Algorithm 4 Modified sieve of Eratosthenes 2 (with output Ω)

1: Input: n.
2: Consider an array of natural numbers and size n, we call this C.
3: a← 0.
4: p← 2.
5: while p ≤

√
n do

6: Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.
7: Evaluate the multiplicity of p for each number (which is multiple of p) up to at least n

(
⌊
n
p

⌋
numbers).

8: for i multiple of p do
9: a(i)← a(i) + multiplicity of p in i.

10: Output: C ≡ Ω for all numbers ≤ n.

By construction, this method yields as output the Ω function for all the numbers in the array.
We need a convenient method to evaluate the multiplicity vp(n) of p in n and complete the
algorithm. One possible way is to use the following properties of vp(n):

Proposition 3.5. vp(n) = 1 for each p prime, n multiple of p such that n < p2.

Proof. This is obvious as a multiple of p has vp(n) ≥ 1 and vp(n) cannot exceed 2 as n < p2.

Proposition 3.6. vp(n) = p(n+ pl) for each p prime, l, n ∈ N, n < pl.

Proof. Let vp(n) = l, then there exists b coprime with p such that n = plb. If now we consider
n + pk = plb + pk = pl(b + pk−l) and since the last multiplicand is coprime with p in any case
with n < pl, we have the thesis.

154

The following algorithm follows from the last propositions. We can generate indeed the prime
multiplicity of p for each multiple of p by copying properly some values. A small number of other
operations is needed:

Algorithm 5 Prime Multiplicity Generation 1

1: Input: p, n.
2: Consider an array A of natural numbers and size

⌊
n
p

⌋
.

3: b←
⌊
logp (n)

⌋
.

4: Assign 1 to the first p− 1 entries of A. . Unless they exceed the size of A, in that case
A← 1 and exit.

5: for i from 2 to b do
6: Assign the correct value (logp s) to the first unassigned entry s of A.
7: Copy the first assigned numbers in the interval [1, pi] p times.
8: Delete the last number of the array A.

9: Copy the first assigned numbers in the interval [1, pb] until the number
⌊
n
p

⌋
is reached.

10: if
⌊
n
p

⌋
= pl for some l ∈ N then

11: Change the last entry of the array to l.

12: Output: Multiplicity of p for all multiples of p smaller than n.

Another possibility, that relies on the multiplication of prime powers of every prime numbers
in the interval by numbers which are not divisible by the prime number itself and store them with
the exponent of the respective powers is the following:

Algorithm 6 Prime Multiplicity Generation 2

1: Input: p, n.
2: b←

⌊
logp (n)

⌋
.

3: Consider an array Ā of natural numbers and size
⌊
n
p

⌋
.

4: for i from 1 to b do . This step could be empty.
5: for j not multiple of p, pi−1j ≤

⌊
n
p

⌋
do

6: Ā(pi−1 ∗ j) = i.

7: Output: Multiplicity of p for all multiples of p smaller than n.

The computational complexity of the incomplete algorithm Modified Sieve of Eratosthenes 2
is again in the order of O(n log log n), as the cost of Eratosthenes’ method. The two methods can
be overlapped. In the first case (using Prime Multiplicity Generation 1 as step 7) the additional
complexity is given by:

155

∑
p≤n

1 +

blogp(n)c∑
i=2

(2 + p)

 =
∑
p≤n

1 + (2 + p)(
⌊
logp(n)

⌋
− 1)

=
∑
p≤n

(
−1− p+ (2 + p)

⌊
logp(n)

⌋)
= O

(
n2

log n

)
,

which makes the first part complexity of the algorithm negligible. This estimate has been made
by using Abel’s summation formula and Prime Number Theorem [2]. In particular the dominant
term of the sum is p

⌊
logp(n)

⌋
. In the second case (Second algorithm as step 7), the computational

complexity is again:

∑
p≤n

1 +

blogp(n)c∑
i=1

∑
j 6=kp,pi−1j≤bnpc

1

 ∼∑
p≤n

1 +
np

p− 1

blogp(n)c∑
i=1

1

pi


∗∗∗∼
∑
p≤n

1 +
np

p− 1

1−
(

1
p

)(1+logp n)

1− 1
p

− 1




∼
∑
p≤n

(
2 +
−p+ 1

p
− 1

n

)
= O

(
n2

log n

)
.

We have used an identity concerning geometric series (***), several approximations and again
Abel’s Identity. The amount of bits used is given by the logarithm of the maximum size of Ω in
the considered interval times the dimension of the interval. If we consider Ω(n) = O(log n) [15],
the final bit consumption isO(n log log n). These final estimates take into account the fact that the
memory used from Modified Sieve of Eratosthenes 2 is at most in the same order of magnitude.

4 Methods with output d

We can modify Algorithm 4 so that the output is the function d, we only change step 9 so the final
output is multiplied instead of being summed:

156

Algorithm 7 Modified Sieve of Eratosthenes 3 (With output d)

1: Input: n.
2: Consider an array of natural numbers and size n, we call this C.
3: a← 0.
4: p← 2.
5: while p ≤

√
n do

6: Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.
7: Evaluate the multiplicity of p for each number (which is multiple of p) up to at least n(⌊

n
p

⌋
numbers

)
.

8: for i multiple of p do
9: a(i)← a(i) · (1+multiplicity of p in i).

10: Output: C ≡ d for all numbers ≤ n.

The computational complexity is comparable with those used from the original method. The
maximum memory consumption is given by Gronwall’s approximation [7] d(n) = O(n log log n)

and it is in the same order of magnitude with O(n log n).

5 Conclusions

The shown methods can evaluate several functions in a way that the primality of any number is
obtained, together with other informations.

Of course, we can have algorithms that yield only prime numbers as output, as in classical
sieve theory, by considering that prime numbers are characterized by ω(p) = 1, Ω(p) = 1

and d(p) = 2. In the end we have achieved additional precision at a bigger cost for memory
consumption. Modern machines will be able to front this cost more and more easily.

We consider that a first relevant step could be to find a fast and parallel implementation for
the algorithms, as already done with the classical counterparts [5].

We furthermore hypothesize that the methods shown in this paper could extend already existing
theories that rely on basic sieve theory [4, 10, 13], or even theory of factorization [6].

These methods, however, are not published with the aim to be the best possible, but to give
new directions in the study of sieve theory.

Acknowledgements

The author of this paper wishes to thank Roberto Amato (University of Messina), Francesco
Belardo (University of Naples), Enzo Maria Li Marzi (University of Messina) and Thomas Slawig
(University of Kiel) for their valuable mentorship. The author wishes to thank also Daniela
Giumbo (University of Messina) and the anonymous referees for the valuable suggestions that
led to the improvement of this manuscript.

157

References

[1] Abramowitz, M., & Stegun, I. A. (1970). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover Publications, New York.

[2] Apostol, T. (1976). Introduction to Analytic Number Theory, Undergraduate Texts in
Mathematics, Springer-Verlag.

[3] Atkins, A. O. L., & Bernstein, J. (2004). Prime Sieves using Binary Quadratic Forms.
Mathematics of Computation, 73(246), 1023–1030.

[4] Cox, D. N. (2008). Visualizing the Sieve of Eratosthenes. Notices of the American
Mathematical Society, 55(5), 579–582.

[5] Da Costa, C. M. C., Sampaio, A., & Barbosa, J. G. (2014). Distributed Prime Sieve in
Heterogeneous Computer Clusters. Proceedings of the 14th International Conference on
Computational Science and Its Applications, Lecture Notes in Computer Science, Vol. 8582.
Springer, Cham, 592–606.

[6] De Saint Guilhem, C. D., Makri, E., Rotaru, D., & Tanguy, T. (2021). The Return of
Eratosthenes: Secure Generation of RSA Moduli using Distributed Sieving. Proceedings
of 2021 ACM SIGSAC Conference on Computer and Communications Security, 594–609.

[7] Gronwall, T. H. (1913). Some asymptotic expressions in the theory of numbers.
Transactions of the American Mathematical Society, 14, 113–122.

[8] Hardy, G. H., & Wright, E. M. (2006). An Introduction to the Theory of Numbers, 6th
edition. Oxford University Press.

[9] Hinz, J. G. (2003). An application of algebraic sieve theory. Archiv der Mathematik, 80,
586–599.

[10] Li, B., Maltese, G., Costa-Filho, J. I., Pushkina, A. A., & Lvovsky, A. I. (2020). Optical
Eratosthenes’ sieve for large prime numbers. Optics Express, 28(8), 11965–11973.

[11] Nathanson, M. B. (2000). Elementary Methods in Number Theory, Springer-Verlag, New
York.

[12] Sorenson, J. (1990). An Introduction to Prime Number Sieves, Computer Sciences Technical
Report No. 909, Department of Computer Sciences, University of Wisconsin–Madison,
January 2, 1990.

[13] Tytus, J. B. (2004). The Random Sieve of Eratosthenes, Science Direct Working Paper No.
S1574-0358(04)70421-9.

[14] Ufuoma, O. (2019). A New and Simple Prime Sieving Technique for Generating Primes
Ending with a Given Odd Digit. Asian Research Journal of Mathematics, 15(5), 1–11.

[15] Weisstein, Eric W. Distinct Prime Factors. From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/DistinctPrimeFactors.html

158

