The congruence speed formula

Marco Ripà
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 43–61
DOI: 10.7546/nntdm.2021.27.4.43-61
Full paper (PDF, 227 Kb)

Details

Authors and affiliations

Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy

Abstract

We solve a few open problems related to a peculiar property of the integer tetration ba, which is the constancy of its congruence speed for any sufficiently large b = b(a). Assuming radix-10 (the well known decimal numeral system), we provide an explicit formula for the congruence speed V(a) ∈ ℕ0 of any a ∈ ℕ − {0} that is not a multiple of 10. In particular, for any given n ∈ ℕ, we prove to be true Ripà’s conjecture on the smallest a such that V(a) = n. Moreover, for any a ≠ 1 ∶ a ≢ 0 (mod 10), we show the existence of infinitely many prime numbers, pj = pj(V(a)), such that V(pj) = V(a).

Keywords

  • Tetration
  • Decadic number
  • Exponentiation
  • Integer sequence
  • Congruence speed
  • Modular arithmetic
  • Radix-10
  • Dirichlet’s theorem
  • Arithmetic progression
  • Prime number

2020 Mathematics Subject Classification

  • 11A07
  • 11N13

References

  1. Caldwell, C. K. (2020). 9 · 101762063 – 1. In Largest Known Primes, PrimePages (Updated on Dec. 10 2020), Accessed: Dec. 10 2020, Available online at: https://primes. utm.edu/primes/page.php?id=131054.Germain, J. (2009). On the Equation axx (mod b), Integers: Learning, Memory, and Cognition, 9(6), 629–638.
  2. Googology Wiki contributors (2020). Tetration. In Hyper operators, Googology Wiki | Fandom (Updated on May 8 2020), Accessed: Dec. 10 2020, Available online at: https://googology.wikia.org/wiki/Tetration.
  3. Lubin & Mario (2016). Why are p-adic numbers and p-adic integers only defined for p prime?. In All Questions, Mathemathics Stack Exchange (Version: 9 Sep. 2016), Available online at: https://math.stackexchange.com/questions/1919274/why-are-p-adic-numbers-and-p-adic-integers-only-defined-for-p-prime.
  4. Mahler, K. (1961). Lectures on Diophantine Approximations I: g-adic Numbers and Roth’s Theorem, University of Notre Dame Press, Notre Dame, Indiana.
  5. Michon, G. P. (2006). Polyadic Arithmethic. In Final Answers, Numericana (Updated on Dec. 10 2020), Accessed: Dec. 10 2020, Available online at: http://www.numericana.com/answer/p-adic.htm.
  6. OEIS Foundation Inc. (2013). The Online Encyclopedia of Integer Sequences, A224473, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A224473.
  7. OEIS Foundation Inc. (2013). The Online Encyclopedia of Integer Sequences, A224474, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A224474.
  8. OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290372, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290372.
  9. OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290373, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290373.
  10. OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290374, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290374.
  11. OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290375, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290375.
  12. OEIS Foundation Inc. (2018). The Online Encyclopedia of Integer Sequences, A317905, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A317905.
  13. OEIS Foundation Inc. (2020). The Online Encyclopedia of Integer Sequences, A337392, Accessed: Sep. 30 2020, Available online at: http://oeis.org/A337392.
  14. Ripà, M. (2011). La strana coda della serie n^n^…^n, UNI Service, Trento.
  15. Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26(3), 245–260.
  16. Selberg, A. (1949). An elementary proof of Dirichlet’s Theorem about primes in an arithmetic progression, Annals of Mathematics, 50(2), 297–304.
  17. Shapiro, H. (1950). On primes in arithmetic progression, Annals of Mathematics, 52(1), 231–243.
  18. Urroz, J. J., & Yebra J. L. A. (2009). On the Equation ax x (mod bn), Journal of Integer Sequences, 8(8), 1–8.
  19. Yan, X.-Y., Wang, W.-X., Chen, G.-R., & Shi, D.-H. (2016). Multiplex congruence network of natural numbers, Scientific Reports, 6, Article no. 23714.

Related papers

  1. Vassilev-Missana, M. (2010). Some results on infinite power towersNotes on Number Theory and Discrete Mathematics, 16(3), 18-24.
  2. Ripà, M. (2020). On the constant congruence speed of tetrationNotes on Number Theory and Discrete Mathematics, 26(3), 245–260.
  3. Ripà, M., & Onnis, L. (2022). Number of stable digits of any integer tetrationNotes on Number Theory and Discrete Mathematics, 28(3), 441-457.

Cite this paper

Ripà, M. (2021). The congruence speed formula. Notes on Number Theory and Discrete Mathematics, 27(4), 43-61, DOI: 10.7546/nntdm.2021.27.4.43-61.

Comments are closed.