Marco Ripà
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 43–61
DOI: 10.7546/nntdm.2021.27.4.43-61
Full paper (PDF, 227 Kb)
Details
Authors and affiliations
Marco Ripà
sPIqr Society, World Intelligence Network
Rome, Italy
Abstract
We solve a few open problems related to a peculiar property of the integer tetration ba, which is the constancy of its congruence speed for any sufficiently large b = b(a). Assuming radix-10 (the well known decimal numeral system), we provide an explicit formula for the congruence speed V(a) ∈ ℕ0 of any a ∈ ℕ − {0} that is not a multiple of 10. In particular, for any given n ∈ ℕ, we prove to be true Ripà’s conjecture on the smallest a such that V(a) = n. Moreover, for any a ≠ 1 ∶ a ≢ 0 (mod 10), we show the existence of infinitely many prime numbers, pj = pj(V(a)), such that V(pj) = V(a).
Keywords
- Tetration
- Decadic number
- Exponentiation
- Integer sequence
- Congruence speed
- Modular arithmetic
- Radix-10
- Dirichlet’s theorem
- Arithmetic progression
- Prime number
2020 Mathematics Subject Classification
- 11A07
- 11N13
References
- Caldwell, C. K. (2020). 9 · 101762063 – 1. In Largest Known Primes, PrimePages (Updated on Dec. 10 2020), Accessed: Dec. 10 2020, Available online at: https://primes. utm.edu/primes/page.php?id=131054.Germain, J. (2009). On the Equation ax ≡ x (mod b), Integers: Learning, Memory, and Cognition, 9(6), 629–638.
- Googology Wiki contributors (2020). Tetration. In Hyper operators, Googology Wiki | Fandom (Updated on May 8 2020), Accessed: Dec. 10 2020, Available online at: https://googology.wikia.org/wiki/Tetration.
- Lubin & Mario (2016). Why are p-adic numbers and p-adic integers only defined for p prime?. In All Questions, Mathemathics Stack Exchange (Version: 9 Sep. 2016), Available online at: https://math.stackexchange.com/questions/1919274/why-are-p-adic-numbers-and-p-adic-integers-only-defined-for-p-prime.
- Mahler, K. (1961). Lectures on Diophantine Approximations I: g-adic Numbers and Roth’s Theorem, University of Notre Dame Press, Notre Dame, Indiana.
- Michon, G. P. (2006). Polyadic Arithmethic. In Final Answers, Numericana (Updated on Dec. 10 2020), Accessed: Dec. 10 2020, Available online at: http://www.numericana.com/answer/p-adic.htm.
- OEIS Foundation Inc. (2013). The Online Encyclopedia of Integer Sequences, A224473, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A224473.
- OEIS Foundation Inc. (2013). The Online Encyclopedia of Integer Sequences, A224474, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A224474.
- OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290372, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290372.
- OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290373, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290373.
- OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290374, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290374.
- OEIS Foundation Inc. (2017). The Online Encyclopedia of Integer Sequences, A290375, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A290375.
- OEIS Foundation Inc. (2018). The Online Encyclopedia of Integer Sequences, A317905, Accessed: Aug. 27 2020, Available online at: http://oeis.org/A317905.
- OEIS Foundation Inc. (2020). The Online Encyclopedia of Integer Sequences, A337392, Accessed: Sep. 30 2020, Available online at: http://oeis.org/A337392.
- Ripà, M. (2011). La strana coda della serie n^n^…^n, UNI Service, Trento.
- Ripà, M. (2020). On the constant congruence speed of tetration. Notes on Number Theory and Discrete Mathematics, 26(3), 245–260.
- Selberg, A. (1949). An elementary proof of Dirichlet’s Theorem about primes in an arithmetic progression, Annals of Mathematics, 50(2), 297–304.
- Shapiro, H. (1950). On primes in arithmetic progression, Annals of Mathematics, 52(1), 231–243.
- Urroz, J. J., & Yebra J. L. A. (2009). On the Equation ax ≡ x (mod bn), Journal of Integer Sequences, 8(8), 1–8.
- Yan, X.-Y., Wang, W.-X., Chen, G.-R., & Shi, D.-H. (2016). Multiplex congruence network of natural numbers, Scientific Reports, 6, Article no. 23714.
Related papers
- Vassilev-Missana, M. (2010). Some results on infinite power towers. Notes on Number Theory and Discrete Mathematics, 16(3), 18-24.
- Ripà, M. (2020). On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, 26(3), 245–260.
- Ripà, M., & Onnis, L. (2022). Number of stable digits of any integer tetration. Notes on Number Theory and Discrete Mathematics, 28(3), 441-457.
Cite this paper
Ripà, M. (2021). The congruence speed formula. Notes on Number Theory and Discrete Mathematics, 27(4), 43-61, DOI: 10.7546/nntdm.2021.27.4.43-61.