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Abstract: We solve a few open problems related to a peculiar property of the integer tetration �� , which is the constancy of its congruence speed for any sufficiently large � = �(�). Assuming 

radix-10 (the well known decimal numeral system), we provide an explicit formula for the 

congruence speed �(�) ∈ ℕ
 of any � ∈ ℕ − �0� that is not a multiple of 10. In particular, for 

any given � ∈ ℕ, we prove to be true Ripà’s conjecture on the smallest � such that �(�) = �. 

Moreover, for any � ≠ 1 ∶  � ≢ 0 (mod 10), we show the existence of infinitely many prime 

numbers, �� = ��(�(�)), such that �(��) = �(�). 
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1 Introduction 

The aim of this paper is to give a general formula for the “congruence speed” of tetration 

[3, 13], affirmatively answering the final conjecture stated in [16]. The properties that arise from 

our study [20] are valid for many different numeral systems [2, 19], but (from here on out) we 

assume radix-10. 

First of all, let us introduce the constancy of the congruence speed of the integer tetration �� . 

Definition 1. Let � ∈ ℕ − �0, 1� not be a multiple of 10. Let � ∈ ℕ. The power tower of height � ∈ ℕ − �0� represents the integer tetration �� ∶= � �                if  � = 1 ��  (!"#) $   if  � ≥ 2. Given 

��'( ≡ �(mod 10*) � ⋀ ��'( ≢ �(mod 10*,()� , ∀� > � ≥ 2, �(�, �) 

returns the strictly positive integer such that 
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� ≡ �/mod 10*,0( )1�,(�  ⋀ � ≢ �/mod 10*,0( ),(1�,(� , 

and we define �(�, �) as the “congruence speed” of the base � at the given height of its 

hyperexponent �. Consequently, if � = 2, the tetrations for � from 1 to 5 are 2 = 2( , 2 = 44 , 2 = 166 , 2 =7 65536, and 2 =9 . . .19156736 (respectively), so we can see that �(2, 1) =�(2, 2) = 0, while �(2, 3) = �(2, 4) = 1. 

 

Now, let us assume � ∈ ℕ ∶ � ≢ 0(mod 10) in the rest of the paper. 

Since it is known [16] that � − 1 ≥ � ≥ 2 is a sufficient but not necessary condition for �(�, �) = �(�), let � > � ≥ 2 unless differently specified, so that we can simply indicate as �(�) the “constant congruence speed” of �, where �(�) has been already defined in Reference 

[16], Definition 2, assuming �(1) = 0 (see [16], pages 248–249). To this purpose, it is crucial to 

underline that the constancy of the congruence speed of � is a general property concerning also 

cases where the minimum value of � such that �(�, �) = �(�) is smaller than � itself (for a proof 

that � ≥ 2 implies �(3, �) = �(3), see [16], Lemma 1). Furthermore, for given pivotal tetrations, 

an in-depth analysis of the smallest � such that the related congruence speed is constant can be 

found in Reference [15]. 

2 A formula for the constant congruence speed of =  

In the present Section we study �(�), taking into account every � ≢ 0(mod 10) [13]. In the first 

subsection, for any given �(�) = � ∈ ℕ − �0, 1�, we show which are the smallest bases 

whose residues modulo 10 cover the whole set �1, 2, 3, 4, 5, 6, 7, 8, 9�. The second subsection is 

devoted to provide a general formula which maps any � whose constant congruence speed is 

given, for any �(�) ∈ ℕ. 

2.1 Finding bases with arbitrarily large ?(=) in the ring  

of the decadic integers 

In order to describe the structure of �(�) ∈ ℕ − �0� in radix-10, for any � ≢ 0(mod 10), it can 

be useful to move the problem on ℤ(
, the ring of the 10-adic integers. 

Proposition 1. The 10-adic integers form a commutative ring, and we indicate it as ℤ(
 [4]. 

Proposition 2. Any positive integer can be represented as a 10-adic integer A. A can be written 

as an infinitely long string of digits going to the left of a fixed digit. The aforementioned fixed 

digit, that we indicate as B(, is the one which defines the congruence class (AKA residue modulo 

10) of the corresponding base of the tetration �� . For any � = 1, 2, 3, . . .., let us consider C(�) ∶= BD_B(D'()_. . . _B4_B( ∈ ℤ(
Fℤ, where the underscore symbol has been introduced in order 

to indicate the juxtaposition of nonnegative integers, so that C(� + 1) = B(D,()_C(�). The 

residues modulo 10D satisfy the congruence relation C(�) ≡ C(� + 1)(mod 10D). Now, assume B( ∈ �1, 2, 3, . . . , 9� and, if � ≥ 2, let B(�,() ∈ �0, 1, 2, . . . , 9� for every H ∈ �1, . . . , � − 1�. In 
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particular, we have that �I#(�) ∶= ∑ B(�,() ∙ 10�D'(�L
 ⇒ �I#(�) ≡ B((mod 10). Thus, given �, �I#(�) is a strictly positive decimal integer, smaller than 10(D,(), having B( as its least significant 

digit.  

On the other hand, we know that, ∀�I#(�), ∃A ∈ ℤ(
 such that A = ∑ B(�,() ∙ 10� ≡O�L
∑ B(�,() ∙ 10�D'(�L
 (mod 10D) = �I#(�). Consequently, the idea to work with decadic integers can 

be an efficient approach to solve (radix-10) the problem of finding, for each congruence class 

modulo 10 belonging to the set �1, 3, 7, 9�, which is the smallest tetration base whose constant 

congruence speed is equal to any given positive integer �. 

Definition 2. For every � ∈ ℕ − �0�, we define �P(�) ∶= minD�� ≢ 0(RS� 10) ∶  �(�) = ��. 

In addition, for any given B( ∈ �1, 2, 3, 4, 5, 6, 7, 8, 9�, let us denote with ��I#�(�) the generic 

element of the set TI#(�) ∶= �� ∶ � ≡ B((mod 10)  ∧  �(�) = ��. Consequently, ∀� ≥ 1, �PI#(�) = minD �TI#(�)$ and �P�(,4,6,7,9,V,W,X,Y�(�) = minD��P((�), �P4(�), . . . , �PY(�)� = �P(�). 

In order to avoid notational misunderstandings, let us specify that, from here on,  ��Z,*� ∈ �AZ ⋃ A*� refers to every (generic) tetration base that is congruent modulo 10 to ] or � 

(assuming that ] and � represent two distinct elements of the set �1, 2, 3, 4, 5, 6, 7, 8, 9�). We use 

the notation �^Z,*_ to indicate that we are considering one particular element from the congruence 

class ] modulo 10 and also another one from the congruence class � modulo 10, so that �P^Z,*_ 
(see Section 2.2) returns the smallest base which is congruent modulo 10 to ] and the smallest 

one which is congruent modulo 10 to �, while �P�Z,*� = min(�PZ , �P*) gives the smallest base which 

is congruent modulo 10 to ] or �. In particular, let us simply write �I# (omitting brackets) if, by 

selecting each one of the allowed congruence classes B(, we always get a unique base, making it 

clear that the elements belonging to special subsets of �� ∈ ℕ ∶ � ≢ 0(mod 10)� will be uniquely 

marked by adding symbols on the top of � itself (such as the aforementioned �PZ or even �⏞∗
), 

while different mathematical objects will be introduced by using other letters; so that bZ(5), 

which indicates the ]-th solution in ℤ(
 of the equation b9 = b (see Proposition 6), should not be 

confused with any base ending in ] (the decadic integer originated by bZ(5) is in no way forced 

to have ] as its rightmost digit). To this purpose, we finally observe that  b9 = b returns at most two decadic integers, say A′Z and A′′Z  , both having the same ] as their 

rightmost digit; since each of the A′I# is well defined for any given B( = 1,2, . . . ,9, we are free to 

introduce some general properties pertaining to the A′I# without needing to add superfluos 

brackets. 

 

Proposition 3. Let us consider the standard decimal numeral system (radix-10). It follows that 

the corresponding d-adic ring that we have to take into account is the decadic one (d = 10) [5], 

but 10 is not a prime number or a power of a prime (since 10 = 2 ∙ 5 = �( ∙ �4). Thus, for every 

odd B( (as defined in Proposition 2), we can find more than one polymorphic A =. . . _B( that arises 

when we solve in ℤ(
 ∶= lim⟵ ℤ(
Fℤ (i.e., the set of formal series ∑ B(�,()O�L
 ∙ 10� , B(�,() ∈�0, 1, 2, 3, 4, 5, 6, 7, 8, 9�) the fundamental equation bg = b. Therefore, assuming B(D,() ≠ 0, ∀B( ∈ �1, 3, 5, 7, 9�, we can find two order-� residues of as many polymorphic integers (i.e., A′ ≠
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A′′ such that A′ ≡ A′′(mod 10)) whose expansions modulo 10D are always characterized by a 

constant congruence speed equal to � (e.g., B( = 7 ⇒ A′I# =. . .66295807 and A′′I# =. . .92077057 both satisfy b9 = b, and � = 7 implies that �(�′(mod 10W)) = �(6295807) =�(�′′(mod 10W)) =  �(2077057) = 7 since the eighth rightmost digit of A′W and A′′W is not 

zero). 

 

Conjecture 1. Let the tetration base � be greater than 1. Let len(�) ∈ ℕ − �0� ∶ 10ijk( )'( ≤� < 10ijk( ) denote the number of digits of �. If � ≢ �0, 3, 7�(mod 10), then � ≥ len(�) + 2 is 

a sufficient condition for �(�, �) = �(�). 

 

Remark 1. Assuming � ≡ �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23�(mod 25), by 

Reference [16], Hypothesis 1, �(�) = 1. This confirms the statement of Conjecture 1 for any � 

as above, since we know that �(�) ≥ 1 ∧ �(�, � + 1) ≤ �(�, �) holds for any � ≥ 3 [15, 16]; 

as a clarifying example of the property �(�, � + 1) ≤ �(�, �) extended to nontrivial congruence 

classes modulo 25, we can take a look at [15], page 27, which includes the phase shift analysis 

of the base 143V49 congruent to 18 modulo 25, explaining why �(143V49, 1) = 0, �(143V49, 2) = �(143V49, 3) = 6, �(143V49, 4) = 5, �(143V49, � ≥ 5) = �(�) = 4 occurs. 

Thus, � ∶ �(�) = 1 implies that, for any � ≥ 3, 1 = �(�, �) ≥ �(�, � + 1) ≥ 1, so that �(�, � +1) = �(�, �) = 1 (e.g., �(2, � ≥ 3) = �(2, � ≥ len(2) + 2) = 1 is consistent with the 

expected result [3]). 

 

Proposition 4. The constant congruence speed of � is well defined if and only if  � ≢ 0(mod 10) [16]. In particular, �(�) ≥ 1 ⇒ � ≥ 2, and � ≥ � + 1 represents a sufficient, 

but not a necessary, condition for the constancy of the congruence speed of �. Moreover,

* {3,7}(mod10) : ( *,2 len( *) 2) 1 ( *, len( *) 3) 1 ( *),a V a b a V a b a V a∃ ≡ ≤ ≤ + = + ≥ + = +  where �∗ ∈ �807, 81666295807, 81907922943, . . . �, and this follows from Proposition 6 (check (n ∈�3, 4, 9, 10�, � > 2) in Equation (2) such that, picking each of the four aforementioned values of n so that A�6,W� is given, 
o�p,q�/rst (
Fu#1 ' o�p,q�(rst (
F)(
F = 5). 

 

Proposition 5. d = 10 = 2 ∙ 5 = �( ∙ �4 ⇒ gcd(�(, �4) = 1 (see Proposition 3). Since in ℤ(
 

(which is not an integral domain) ∃ℎ ≠ 0 ∧  y ≠ 0 such that ℎ ∙ y = 0, it follows that, for every � ∈ ℕ, 54F ∙ 29F ≡ 0(mod 10D) by the ring homomorphism z ∶  ℤ(
 → ℤ(
Fℤ. Since the sequence |54F}D ∶= 54~ , 54# , 54� , . . .. converges 5-adically to 0 and 2-adically to 1, and |29F}O = 1 −|54F}O, the above is the unique pair which induces the decomposition of ℤ(
. Thus, ℤ(
 ≅ ℤ9 ⊕ℤ4 (where ⊕ indicates the direct sum) since, for � prime, the complete ring ℤ� contains only the 

two idempotents elements 0 and 1, and the 5-adically plus 2-adically convergence implies the 10-adically convergence (by Cauchy’s convergence criterion). Hence, assume ℎ(�) ≃ 54F
 and y(�) ≃ 29F

 in order to solve the fundamental equation bg = b, introduced by Proposition 3. 

Given B( = 5, if ℎD = 54F(mod 10D), then limO←D ℎD =. . .92256259918212890625 [4]. 

Similarly, for B( = 2, yD = 29F(mod 10D) ⇒ limO←D yD =. . .804103263499879186432. 
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Now, let �b�(�), n = 1, 2, . . . � be the set of the n solutions in ℤ(
 of bg = b, and also let �b�̂(�), �̂ = 1, 2, . . . � be a subset of �b�(�)�. If � = 2, then ∄�̂ ∶ b�̂(�) ∈ �0, 1� ⟺ b�̂(2) ∈�ℎ, 1 − ℎ� for any �,̂ so let b((2) = ℎ and b4(2) = 1 − ℎ. 

Following the path above, it is possible to verify that all the solutions of bg = b belong to the 

set of the solutions of b9 = b [6]. Thus, for every given � ̂ such that b�̂(�) ∉ �0, 1�, b�̂(5) ↦�(�) = BD_B(D'()_. . . _B4_B( ⇒ �(�(�)) ≥ �. We point out that B(D,() = 0 ⇒ �(�(�)) > � and �(�(�)) = � ⇒ B(D,() ≠ 0, since BD_. . . _B4_B( ≡ B(D,()_BD_. . . _B4_B((mod 10D) ∧BD_. . . _B4_B( ≢ B(D,()_BD_. . . _B4_B((mod 10D,() is a necessary condition for �(�(�)) = �. 

In particular, we should note that if b((,6,7,Y,(
,(4,(6,(9)(5) originates all the pentamorphic 

integers coprime to 10 satisfying bg = b (see Proposition 6, Equation (2)), then  

( ) ( ) ( )2 2 5 2 5
(1,3,4,9,10,12) (5) 1 2 5 (mod10 ), 5 2 (mod10 ), 5 2 (mod10 )

n n n n nn n n
y  

± − ⋅ ± − ± + 
 

֏

is enough to find all the smallest bases ��^(,6,W,Y_(�) ≤ �P^(,6,W,Y_(�) characterized by a constant 

congruence speed which is at least equal to any given strictly positive integer �. Hence, 

considering each of the four mentioned congruence classes modulo 10, the ��^(,6,W,Y_(�) (whose 

constant congruence speed is �/��^(,6,W,Y_(�)1 ≥ �) are given by Equation (1), ��^(,6,W,Y_(�) =

⎩⎪⎨
⎪⎧/1 − 2 ∙ 54F1(mod 10D)                                                iff  � ≡ 1(mod 10) ∧ � ≠ 1minD �/54F − 29F1(mod 10D), −/54F + 29F1(mod 10D)$  iff  � ≡ 3(mod 10)minD �/54F + 29F1(mod 10D), /29F − 54F1(mod 10D)$     iff  � ≡ 7(mod 10)/2 ∙ 54F − 11(mod 10D)                                                                iff  � ≡ 9(mod 10)

.  (1) 

In Equation (1), the condition � ≠ 1 follows from the definition of �(�) itself, which 

includes �(1) = 0 < � (for the reasons explained in Reference [16], pages 248-249). Since 1�  

is congruent modulo 10� to 1(�,()
 for any R ∈ ℕ
, the constant congruence speed of � = 1 is 

special, and this explains why, in the next proposition, we will exclude b(9(�) ∶ 1g = 1 from the 

set of the nontrivial solutions of bg = b. 

 

Proposition 6. Let ℎ(�) ≃ 54F
 and y(�) ≃ 29F

, as usual. Assume � ≥ 5 and let �b�(�), n ∈ ℤ,� 

represent the set of all the solutions in ℤ(
 of the fundamental equation bg = b (i.e.,  n ∈ �1, 2, 3, . . . , 14, 15�). Assume that A′I# ∈ ℤ(
 and A′′I# ∈ ℤ(
 (if any) are not equal each other 

for any B( ∈ �1, 2, . . . ,9�, so that we denote with |A′I# ∪ A′′I#} ∶= �b�̂(�), �̂ = 1, 2, . . . � the subset 

formed by the b�(�) which are not congruent modulo 104 to �0, 1�. It follows  

that �b�(5), n = 1, . . . ,15� ⊋ �A′(, A′4 , A′6, A′′6, A′7, A′9, A′′9, A′V, A′W, A′′W, A′X, A′Y, A′′Y�, since b(7(�) ∶ 0g = 0 and b(9(�) ∶ 1g = 1 show the existence of two (trivial) solutions of b9 = b 

which are not included in the previously mentioned subset. In order to understand how the 

remaining b�(�) anticipate the recurrence rules stated in Section 2.2, it can be helpful to 

preliminary observe that the b�(�) follow from limD→O 54F = (,√(4 ⇒ b = limD→O 54F = limD→O 54Fu# =b4 ⇒ b���(2) = b((,(4,(7,(9)(�) = �A�(, A�Y, 0, 1� = |−√1, √1, 0, 1}, and we can easily verify that 
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A�Y = −A�( = √1 = limD→O 9F'4F9F,4F [7, 8]. Considering � = 5, we find in a similar way all the other 

roots (e.g., see References [9–12] for A′6, A′′6, A′W, and A′′W), so it is possible to conclude that 

the b��(6(� ≥ 5) are such that A�( = −A�Y, A�4 = −A�X, A�6 = −A�W, A��6 = −A��W, A�7 =−A�V, A�9 = −A′′9, and A′′Y = −1. Furthermore, for any �, y(�)4 + 1 = ℎ(�) ↦ 54F ≡�/29F14 + 1$ (mod 10D) if and only if 54F ≡ /49F + 11(mod 10D). 

In general, as clearly explained by Michon in Reference [6], we have b��(6(�) =

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧A′( = 1 − 2 · ℎ = . . .85153153538207781991786760045215487480163574218751   iff n = 1A′4 = y = . . . 04553032451441224165530407839804103263499879186432                iff n = 2A′6 = ℎ − y = . . .52870390779454884838576212137588152996418333704193        iff n = 3A′′6 = −ℎ − y = . . .38023544317662666830362972182803640476581907922943    iff n = 4A′7 = ℎ − 1 = . . .57423423230896109004106619977392256259918212890624        iff n = 5A′9 = ℎ = . . .57423423230896109004106619977392256259918212890625                iff n = 6A′′9 = −ℎ = . . .42576576769103890995893380022607743740081787109375            iff n = 7A′V = 1 − ℎ = . . .42576576769103890995893380022607743740081787109376         iff n = 8A′W = −ℎ + y = . . .47129609220545115161423787862411847003581666295807      iff n = 9A′′W = ℎ + y = . . .61976455682337333169637027817196359523418092077057      iff n = 10A′X = −y = . . .95446967548558775834469592160195896736500120813568            iff n = 11A′Y = 2 · ℎ − 1 = . . .14846846461792218008213239954784512519836425781249 iff n = 12A′′Y = −1 = . . .99999999999999999999999999999999999999999999999999          iff n = 13

.   (2) 

 

Since z ∶  ℤ(
 → ℤ(
Fℤ, it follows that A ↦ �(mod 10D) ⇒ � �A′I#(mod 10D)$ ≥ � and �/A′′I#(mod 10D)1 ≥ �. More specifically, ∀� ≥ 2, B(D,() = 0 ⇒ �� �A′I#�9(mod 10D)$ ∧
� �A′′I#�9(mod 10D)$� ≥ � + 1, while ��/A′9(mod 10D)1 ∧ �/A′′9(mod 10D)1$ ≥ � + 1 is 

true for any B(D,() ∈ �0, 1, 2, 3, 4, 5, 6, 7, 8, 9�. 

In particular, if gcd(B(, 10) = 1, then we can easily verify that the relations shown in the 

next subsection are correct; so, ∀� ≥ 2, B(D,() ≠ 0 ⇒ � �A′((,6,W,Y)(mod 10D)$ = � and also � �A′′(6,W,Y)(mod 10D)$ = �. 

 

Proposition 7. Let A′I#(�) ∶= A′I#(mod 10D). Let us consider only the even values of B(, so that B̂( ∈ �2, 4, 6, 8�. Since �/A′I#(�)1 ≥ � for any � ∈ ℕ − �0�, we only need to compute the 

residues modulo 2 ∙ 5D of A′Î# (observing that (2 ∙ 5D) | � ��/A′Î#(�)1$ for any � > 1, see [16], 

Section 5) in order to find many of the bases �PÎ#(�) which are characterized by a constant 

congruence speed of � (e.g., if B̂( = 2 and � = 4, then �/A′4(4)1 = �(6432) = 4, and �/6432(mod 2 ∙ 57)1 = �(182) = 4 = �/�P4(4)1 ⇒ �P4(4) = 182). In general, we have that �/A′Î#(�)(mod 2 ∙ 5D)1 ≥ � (e.g., �/A′4(14)(mod 2 ∙ 5D)1 = 15), and A′Î#(�)(mod 2 ∙ 5D) 

always returns the smallest base (congruent modulo 10 to B̂() which is characterized by a constant 

congruence speed equal or greater than �. Since we are interested in �/�PÎ#(�)1 = � without any 

exception, we find every �P^4,7,V,X_(�) by adding, if necessary, 2 ∙ 5D to A′Î#(�)(mod 2 ∙ 5D) (e.g., �/A′X(9)1 = �(120813568) = 9, and 120813568 ≡ 3626068(mod 2 ∙ 5Y) would suggest 
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that A′X(9)(mod 2 ∙ 5Y) is equal to 3626068, but clearly �(3626068) = 9 + 1), so that A′Î#(�)(mod 2 ∙ 5D) + �Î#(�) ∙ 2 ∙ 5D = �PÎ#(�) still holds for one �Î#(�) ∶= �(B̂(, �) ∈ �0, 1� 

(in the two previous examples we verify that � = 1 holds because (A′4(14)(mod 2 ∙ 5D) + 1 ∙2 ∙ 5(7 = 23316686432 =  �P4(14) > �P4(15) = A′4(14)(mod 2 ∙ 5Y), and also A′X(9)(mod 2 ∙ 5D) + 1 ∙ 2 ∙ 5Y = 7532318 =  �PX(9) > �PX(10) = A′X(9)(mod 2 ∙ 5Y)).  

In particular, if B̂( ∈ �4, 6�, then �P7(�) = 5D − 1 ∧  �PV(�) = 5D + 1 follows by construction 

(see b(9,X)(5) by Equation (2)). Trivially, for any �, 5D − 1 ≡ (5D − 1)(mod 2 ∙ 5D) and also 5D + 1 ≡ (5D + 1)(mod 2 ∙ 5D); thus, B̂( = (4 ∨  6) ⇒ �(7,V) = 0 for any positive integer �. 

Finally, we have that �Î#(�) = 1 if and only if B̂( = (2 ∨  8)  ∧  A′Î#(�)(mod 2 ∙ 5D) =A′Î#(� + 1)(mod 2 ∙ 5(D,()), while � = 0 otherwise. 

This concludes the proof that, for any � ≥ 1 and each B̂( ∈ �2, 4, 6, 8�, ∃¡(B̂(, �) ∈ ℕ
 ∶A′Î#(�) − ¡ ∙ 2 ∙ 5D = �PÎ#(�). 

Lastly, we can find bases congruent to 5 modulo 10 that are smaller than minD/A′9(�), A′′9(�)1 and whose constant congruence speed is at least equal to �, by simply 

taking into account that �′(A′9(�)) = �′(A′′9(�)) = 5 ∙ 2D,( (see [16], Section 5) and 

introducing the additional condition � > 2. 

Thus, �/A′9(�)(mod 10 ∙ 2D)1 ≥ �  ⋀  �/A′′9(�)(mod 10 ∙ 2D)1 ≥ �,   (3) 

and Equation (3) let us confirm the validity of Equation (5) (e.g., if � = 20, then A′9(20) =92256259918212890625 is congruent modulo 10 ∙ 24
 to 9437185 and �(9437185) = 20, 

while �/A′′9(20)(mod 10 ∙ 24
)1 = �(6291455) = 21 > �). 

2.2 Main result 

We show that Equation (4) is true for any � ≥ 2 (i.e., � ≥ 2 ⇒ �P9(�) = �P(�), see Definition 2). 

�P(�) = minD �2D ∙ �2 ∙ cos �£∙(D'()4 $ − 4 ∙ sin �£∙(D'()4 $ + 5$ + 1 , 2D ∙ �4 ∙ sin �£∙(D'()4 $ − 2 ∙cos �£∙(D'()4 $ + 5$ − 1)$.  (4) 

Hence, 

                �P(�) = ¤2D ∙ �5 + 2 ∙ sin �£∙D4 $ + 4 ∙ cos �£∙D4 $� + 1     iff  � ≡ �2, 3�(mod 4)
2D ∙ �5 − 2 ∙ sin �£∙D4 $ − 4 ∙ cos �£∙D4 $� − 1     iff  � ≡ �0, 1�(mod 4) . (5) 

Now, assume � > � ≥ 2 (as usual), even if for any � ≡ �1,2,4,5,6,8,9�(mod 10) we are 

persuaded that � ≥ len(�) + 2 represents a sufficient condition for �(�, �) = �(�), as predicted 

by Conjecture 1 [2, 19]. Then, for any given � ∈ ℕ − �0, 1�, �/��I#�(�)1 = �, ∀B( ∈�1, 2, 3, 4, 5, 6, 7, 8, 9�, if and only if Equations (6), (7), (8), (10), (11), (14), (15), (16), and (17) 

are satisfied. 
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A1(�) =
¥/27∙9F,( − 11(mod 10D) + HD ∙ 10D, ∀HD ≢ �4¦∙§Fu#u#'($(rst (
Fu#) ' �4¦∙§Fu#'($(rst (
F)(
F (mod 10)10D + 1 + ¡ ∙ 10D, ∀¡ ≡ �0, 1, 2, 3, 4, 5, 6, 7, 8�(mod 10)          . (6) 

Referring to Equation (6) above, we observe that the previously stated condition  � ∈ ℕ − �0, 1� assures � ≠ 1, so that we have excluded a priori the possibility that /27∙9#,( − 11(mod 10() + 0 ∙ 10D = 1 > 0 gives a contradiction, inasmuch as �(1) = 0 by 

definition. 

Since (¡ + 1) ∙ 10D + 1 > /27∙9F,( − 11(mod 10D) is always true, Equation (6) implies 

that if � ∶ /27∙9F,( − 11(mod 10D)  ≢  /27∙9Fu#,( − 11(mod 10D,(), then ∃! �((�)  ≤ /2(7∙9F,() − 11(mod 10D). Thus, if the (� + 1)-th rightmost digit of A′( (see Equation (2)) is 

nonzero, then the unique base �((�) ≤ /2(7∙9F,() − 11(mod 10D) corresponds to the desired �P((�). 

In general (as introduced in Proposition 6), �/��(,Y�1 ≤ min(�́, �̀), where �́ ∶ 5D́ | /��(,Y�4 − 11 ∧ 5D́,( ∤ /��(,Y�4 − 11, and �̀ ∶ 2D̀ | /��(,Y�4 − 11 ∧ 2D̀,( ∤ /��(,Y�4 − 11 

(i.e., �́ ≠ 0 is equal to the 5-adic valuation of /��(,Y�4 − 11, while �̀ ≠ 0 indicates the 2-adic 

valuation of /��(,Y�4 − 11). 

It follows that, ∀� ≥ 2, 10D + 1 ≥ �P((�) > √5D + 1 (since 5D + 1 is even). 

Similarly to Equation (6), if B( = 9, we have A9(�) =
¥/2 ∙ 54F − 11(mod 10D) + HD ∙ 10D, ∀HD ≢ �4∙9�Fu#'($(rst (
Fu#) ' �4∙9�F'($(rst (
F)(
F (mod 10)10D − 1 + ¡ ∙ 10D, ∀¡ ≡ �0, 1, 2, 3, 4, 5, 6, 7, 8�(mod 10)     . (7) 

As previously shown, if � ∶ /2 ∙ 54F − 11(mod 10D) ≢ /2 ∙ 54Fu# − 11(mod 10D,(), then  ∃! �Y(�) ≤ /2 ∙ 54F − 11(mod 10D). In general, �/��(,Y�1 ≤ min(�́, �̀) and Equation (7) imply 

that 10D > �PY(�) > √5D + 1. 

We point out that, as a consequence of Proposition 6 (see the case B(D,() = 0), 

� ∶  /27∙9Fu#,( − 11(mod 10D,() − /27∙9F,( − 11(mod 10D)10D ≡ 0(mod 10) 

⇒ /27∙9F,( − 11 ≡ /27∙9Fu#,( − 11(mod 10D,() ⇒ �((27∙9Fu#,( − 1)(mod 10D)) > �, 

and similarly � ∶  (2 ∙ 54Fu# − 1)(mod 10D,() − (2 ∙ 54F − 1)(mod 10D) ≡ 0(mod 10D,() ⇒ /2 ∙ 54F − 11 ≡ /2 ∙ 54Fu# − 11(mod 10D,() ⇒ �((2 ∙ 54F − 1)(mod 10D)) > � 

(e.g., �(163574218751) = � �/27∙9#�,( − 11(mod 10(4)$ = 13). 
Let us consider the case B( = 5. From [16], we know that, ∀� ∈ ℕ − �0, 1�, 

    A9(�) = ¤2D ∙ �5 + 2 ∙ sin �£∙D4 $ + 4 ∙ cos �£∙D4 $� + 1 + ¡ ∙ 5 ∙ 2D,(, ∀¡ ∈ ℕ
2D ∙ �5 − 2 ∙ sin �£∙D4 $ − 4 ∙ cos �£∙D4 $� − 1 + ¡ ∙ 5 ∙ 2D,(, ∀¡ ∈ ℕ
. (8) 
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Equation (8) implies that 

                                                            �P9(�) ≤ 9 ∙ 2D + 1,  (9) 

and the last inequality (trivially) holds because, ∀� ∈ ℕ, 

max �± ¯ ∙ cos �£4 ∙ �$ ± b ∙ sin �£4 ∙ �$� = max(|¯|, |b|). 

If B( = 4 or B( = 6, for the reasons already discussed in the previous subsection, we have, 

respectively,     A7(�) = 5D − 1 + ¡ ∙ 2 ∙ 5D, ∀¡ ≡ �0, 1, 3, 4�(mod 5);   (10) 

   AV(�) = 5D + 1 + ¡ ∙ 2 ∙ 5D, ∀¡ ≡ �0, 1, 3, 4�(mod 5). (11) 

Equations (10) and (11) imply that, ∀�, ��7�(�) = ��V�(�) − 2. 

Thus, minD/�P7(�), �PV(�)1 = �P7(�) = 5D − 1. 

Now, we study the cases B( = 2 and B( = 8. In general, �(��4,X�) is less than or equal to �°, 

the 5-adic valuation of /��4,X�4 + 11, and in particular we have 

��4,X�(�°) = ±5D° ∙ ] ��,²�(�°) − 1 = ±5(D°'D) ∙ 5D ∙ ] ��,²�(�°) − 1 ⇒ �/��4,X�(�)1 = � ≤ �°    (12) 

Since ] ��,²�(�°) ∈ ℕ − �0� for any �°, Equation (12) states that minD/�P4(�), �PX(�)1 ≥√5D − 1. 

More specifically, picking any value of �°, the constraint that ] ��,²� =  ��,²��,(9F³  have to be 

solved for ] ��,²� over the integers (as �) let us calculate the solutions (taking the natural 

logarithm) from 

                                                             �° = ik´µ��,²��u#¶µ��,²� ·
ik(9)  ;  (13) 

as a random example, we can see that �° = 20 ⇒  ��,²��,(9�~ = ] ∈ ℕ ⇒ ��4,X�(20) = (54
 ∙ 2 ∙ R +15613890344818) ∨ (54
 ∙ (2 ∙ R + 1) + 79753541295807), where R ∈ ℕ
. Hence, 

 R = 0 ⇒ �PX(20)  =  15613890344818, �P4(20)  =  54
 ∙ 1 + 79753541295807 = 175120972936432, (since 54
 ∙ � + 79753541295807 is odd for any even value of �, 

including zero, while 54
 ∙ � + 15613890344818 is odd if and only if � assumes an odd value, 

and vice versa), and this is enough to conclude that �P^4,X_(20) = �175120972936432,15613890344818� ⇒ � ��P^4,X_(20)$ = 20 ⇒ (54
 ∙ (2 ∙ R + 1) + 79753541295807) ≥ 20 

and so is �(54
 ∙ 2 ∙ R + 15613890344818) (the last inequality can be proved  

by observing that (�° = 20, B( = 2, R = 1) ⇒ �4(�° = 20, R = 1) = (54
 ∙ (2 ∙ 1 + 1) +79753541295807) = 365855836217682 = �P4(21) ⇒ �(�4(20, 1)) = �(�4(21, 0)) =�(476837158203125 ∙ 0 + 365855836217682) = �/�P4(21)1 = 21 > 20 = �/�P4(20)1; 

ditto for B( = 8). 

Equation (13) provides also a valid upper bound for the constant congruence speed of every 

element of �A6 ⋃ AW�, since ��4,6,W,X�4 + 1 = ∏ ��¹º ∙ 5D° �º�9 ≥ ∏ ��¹º ∙ 50( ��,p,q,²�) �º�9 (where 
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�� represents the prime divisors of ��4,6,W,X�4 + 1 which are not equal to 5, while every » indicates 

how many times the corresponding � appears in the factorization of ��4,6,W,X�4 + 1 [19]). 

Furthermore, �/��6,W�1 ≤ min(�°, �̀), where �° ∶ 5D°  | /��6,W�4 + 11 ∧ 5D°,( ∤ /��6,W�4 + 11 

and �̀ ∶ 2D̀ | /��6,W�4 − 11 ∧ 2D̀,( ∤ /��6,W�4 − 11. It follows that, for any (strictly) positive 

integer �, minD/�P6(�), �PW(�)1 > √5D − 1 (since 5D − 1 is even). 

As shown in Section 2.1, we can easily improve the above upper bound by taking advantage 

of the commutative ring of the 10-adic integers, giving an explicit formula for �(��6,W�) = � in 

the same way as we have already done for �(��(,Y�). For this purpose, let �(��6,W�) = � ≤ �°. 

Since AW′ = ℎ − y = −A6′ and AW′′ = ℎ + y = −A6′′ (where ℎ(�) ≃ 54F
 and y(�) ≃ 29F

), 

if B( = 3, then A3(�) =
¤(54F − 29F)(mod 10D) + HD ∙ 10D,    ∀HD ≢ (9�Fu#'4§Fu#)(rst (
Fu#) ' (9�F'4§F)(rst (
F)(
F (mod 10)

−(54F + 29F)(mod 10D) + HD ∙ 10D, ∀HD ≢ (9�F,4§F)(rst (
F) ' (9�Fu#,4§Fu#)(rst (
Fu#)(
F (mod 10),  (14) 

while the case B( = 7 is covered by Equation (15)       A7(�) =
¤/29F − 54F1(mod 10D) + HD ∙ 10D, ∀HD ≢ �4§Fu#'9�Fu#$(rst (
Fu#)– �4§F'9�F$(rst (
F)(
F (mod 10)

/54F + 29F1(mod 10D) + HD ∙ 10D, ∀HD ≢ �9�Fu#,4§Fu#$(rst (
Fu#)– �9�F,4§F$(rst (
F)(
F (mod 10). (15) 

In order to complete the (constant) congruence speed map, we only need a formula for A4(�) 

and AX(�), as shown by Equations (6), (7), (8), (10), (11), (14), and (15). 

From Proposition 7, we know that A′(4,X)(�) ∶= A′(4,X)(mod 10D) implies A′4(�) +A′X(�) = 10D, A′4(�)(mod 2 ∙ 5D) + A′X(�)(mod 2 ∙ 5D) = 2 ∙ 5D, and �P(4,X)(�) =A′(4,X)(�)(mod 2 ∙ 5D) + �(4,X)(�) ∙ 2 ∙ 5D, where �(4,X)(�) =
½0 iff A′(4,X)(�)(mod 2 ∙ 5D) ≠ A′(4,X)(� + 1)/mod 2 ∙ 5(D,()11 iff A′(4,X)(�)(mod 2 ∙ 5D) = A′(4,X)(� + 1)/mod 2 ∙ 5(D,()1. 

    A4(�) = �P4(�) + ¡ ∙ 2 ∙ 5D,   ∀¡ ≢  P�(D,() '  P�(D) 4∙9F (mod 5),  (16)     AX(�) = �PX(�) + ¡ ∙ 2 ∙ 5D,   ∀¡ ≢  P²(D,() '  P²(D) 4∙9F (mod 5), (17) 

where, as usual, �P4(�) = �25�(mod 10D)$ (mod 2 ∙ 5D) + �4(�) ∙ 2 ∙ 5D and �PX(�) =�−25�(mod 10D)$ (mod 2 ∙ 5D) + �X(�) ∙ 2 ∙ 5D. 

Hence, �P4(�) + �PX(�) = A′4(�)(mod 2 ∙ 5D) + A′X(�)(mod 2 ∙ 5D) + 2 ∙ 5D ∙ (�4(�) +�X(�)). 
Since A′4(�)(mod 2 ∙ 5D) + A′X(�)(mod 2 ∙ 5D) = 2 ∙ 5D, for any �, we have shown that �P4(�) = 2 ∙ 5D ∙ (1 + �4(�) + �X(�)) − �PX(�), where (�4(�) + �X(�)) ∈ �0, 1, 2�. 

In conclusion, if �(�) = 1, then �(1) ≡ �2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23�(mod 25). (18) 
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Therefore, we have mapped all the bases � such that �(�) = �. 

The constant congruence speed formula that we have shown in the present section confirms 

also Hypothesis 1 and Hypothesis 2, stated in Reference [16], as �(�) ≥ 2 ⇒ �/�(�)1 =100( ),( (see [15], Equation (10)). 

Now, we are finally ready to prove that � ≥ 2 ⇒ �P(�) = �P9(�) = /2D ∙ ((−1)D'( + 2) −nD∙(D'()1, and this will be the goal of Section 3. 

3 Smallest = for any given value of the constant  

congruence speed  

In this section, we prove the last conjecture stated in [16]. 

Theorem 1. Let �P(�) be defined as in Definition 2. ∀� ∈ ℕ − �0, 1�, 

�P(�) = ¤2D ∙ �5 + 2 ∙ sin �£∙D4 $ + 4 ∙ cos �£∙D4 $� + 1     iff  � ≡ �2, 3�(mod 4)
2D ∙ �5 − 2 ∙ sin �£∙D4 $ − 4 ∙ cos �£∙D4 $� − 1     iff  � ≡ �0, 1�(mod 4); 

while �P(1) = 2. Additionally, ��(0)� = �1� = �P(0). 

Proof. From Section 2.2 (see Equations (6) to (17)), we know that, ∀� ≥ 2, 

�P�(,Y�(�)  = minD/�P((�), �PY(�)1 > √5D + 1; 

�P�4,X�(�) = minD/�P4(�), �PX(�)1 ≥ √5D − 1; 

�P�6,W�(�) = minD/�P6(�), �PW(�)1 > √5D − 1; 

�P�7,V�(�)  = minD/�P7(�), �PV(�)1 = �P7(�) = 5D − 1. 

Hence, 

   �P�(,4,6,7,V,W,X,Y�(�) = minD ��P�(,Y�(�), �P�4,X�(�), �P�6,W�(�), �P�7,V�(�)$ 

⇒ �P�(,4,6,7,V,W,X,Y�(�) ≥ √5D − 1.  
 

(19) 

On the other hand, Equation (9) implies that ∄� ∈ ℕ − �0, 1� ∶ �P9(�) > 9 ∙ 2D + 1, since 

�P9(�) = ¾2D ∙ �2 ∙ cos �£∙(D'()4 $ − 4 ∙ sin �£∙(D'()4 $ + 5$ + 1   iff  � ≡ �2, 3�(mod 4)2D ∙ �4 ∙ sin �£∙(D'()4 $ − 2 ∙ cos �£∙(D'()4 $ + 5$ − 1   iff  � ≡ �0, 1�(mod 4). 
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Thus, in order to prove the main statement of Theorem 1, it is sufficient to check the inequality √5D − 1 > 9 ∙ 2D + 1, observing that it is certainly true for every � ≥ 20 (since √5¿ − 1 = 9 ∙ 2¿ + 1 ⇒ 19.693374 < ¯ < 19.693375). So we only need to verify that, ∀� ∈ ^2, 19_, �P9(�) < �P�(,4,6,7,V,W,X,Y�(�), and the values are listed in Table 1 (see Equations (6) to (17)). 

 À = ?(=) =ÁÂ(À) =Á�Ã,Ä,Å,Æ,Ç,È,É,Ê�(À) 

1 ∄ �P9(1) 2 

2 5 7 

3 25 57 

4 15 182 

5 95 3124 

6 65 1068 

7 385 32318 

8 255 390624 

9 1535 280182 

10 1025 3626068 

11 6145 23157318 

12 4095 120813568 

13 24575 1220703124 

14 16385 1097376068 

15 98305 11109655182 

16 65535 49925501068 

17 393215 762939453124 

18 262145 355101282318 

19 1572865 19073486328124 

Table 1. Comparison between the smallest �(�) congruent modulo 10 to 5,  

whose constant congruence speed is equal to � ≤ 19, and the minimum 

 �(�) ≡ �1, 2, 3, 4, 6, 7, 8, 9�(mod 10). 

As it follows from Equations (9) and (19), ∀� ∈ ℕ − �0, 1�, �P(�) ∶= �P�(,4,6,7,9,V,W,X,Y�(�) =�P9(�). 

Therefore, in order to complete the proof, it is sufficient to observe that �(2) = 1 and �(1) = 0 (see [16]). � 

Corollary 1. Let �P(�) be defined as in Definition 2, and let n4 = −1. ∀� ∈ ℕ − �0, 1�, 

�P(�) = 2D ∙ ((−1)D'( + 2) − nD∙(D'(). (20) 

Proof. The statement of Corollary 1 easily follows from Theorem 1. 

Since, in September 2020, Bruno Berselli noted that Sequence A337392 of the OEIS is given by 
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�(�) = (2 − (−1)D) ∙ 2D + n(D,()∙(D,4) (see Formula in Reference [14]), it trivially follows that 

Equation (5) can be further simplified if we prove the claim; 

�P(�) =
⎩⎪⎨
⎪⎧2D ∙ ´5 + 2 ∙ sin �Ë ∙ �2 $ + 4 ∙ cos �Ë ∙ �2 $· + 1     iff  � ≡ �2, 3�(mod 4)

2D ∙ ´5 − 2 ∙ sin �Ë ∙ �2 $ − 4 ∙ cos �Ë ∙ �2 $· − 1     iff  � ≡ �0, 1�(mod 4)   
   = 2D,( + �sin �£∙(D,()∙(D,4)4 $ − 2D ∙ sin(Ë ∙ �)� ∙ n − 2D ∙ cos(Ë ∙ �) +cos �£∙(D,()∙(D,4)4 $. (21) 

Hence, 2D ∙ cos(Ë ∙ �) − n ∙ 2D ∙ sin(Ë ∙ �) = −2D ∙ Ì�∙£∙D implies that 

  �P(�) = 2D,( − 2D ∙ Ì�∙£∙D + ÌÍ∙Î�  ∙(D∙(D,6),4). (22) 

Since Ì�∙£ + 1 = 0 ⇒ ÌÍ∙Î�  = n and Ì�∙£∙D = (−1)D, it follows that 

�P(�) = 2D,( − 2D ∙ (−1)D + n  (D∙(D,6),4). (23) 

Thus, Berselli’s formula is correct and we have 

  �P(�) = 2D,( + 2D ∙ (−1)D'( − nD∙(D,6).  (24) 

Therefore, in order to confirm Equation (20) and conclude the proof, it is sufficient to observe 

that nD∙(D,6) = nD∙(D'(). � 

Remark 2. Corollary 1 provides also a short proof of Theorem 1, since 

�P(�) = 2D ∙ ((−1)D'( + 2) − nD∙(D'() ≤ 2D ∙ (1 + 2) + 1. (25) 

Thus, √5D − 1 > 3 ∙ 2D + 1 holds for any � ≥ 10. 

Corollary 2. ∀� ∈ ℕ − �0, 1� and ∀¡ ∈ ℕ
, 

A9(�) = �/2D ∙ ((−1)D'( + 2) − nD∙(D'()1 ∨ /2D ∙ ((−1)D + 8) + nD∙(D'()1$ + ¡ ∙ 10 ∙ 2D. (26) 

Proof. Equation 5 and Corollary 1 (Berselli’s formula) imply that 

A9(�) = 2D ∙ ((−1)D'( + 2) − nD∙(D'() + ¡ ∙ 10 ∙ 2D ∪
¤2D ∙ �5 + 2 ∙ sin �£∙D4 $ + 4 ∙ cos �£∙D4 $� + 1 + ¡ ∙ 10 ∙ 2D     iff  � ≡ �0, 1�(mod 4)

2D ∙ �5 − 2 ∙ sin �£∙D4 $ − 4 ∙ cos �£∙D4 $� − 1 + ¡ ∙ 10 ∙ 2D     iff  � ≡ �2, 3�(mod 4). 

Since, ∀� ≥ 2, it easy to verify (as shown in the proof of the aforementioned Corollary 1) that 
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⎩⎪⎨
⎪⎧2D ∙ ´5 + 2 ∙ sin �Ë ∙ �2 $ + 4 ∙ cos �Ë ∙ �2 $·   iff  � ≡ �0, 1�(mod 4)

2D ∙ ´5 − 2 ∙ sin �Ë ∙ �2 $ − 4 ∙ cos �Ë ∙ �2 $·   iff  � ≡ �2, 3�(mod 4) 

= 2D ∙ /26 + cos(Ë ∙ �) + n ∙ sin(Ë ∙ �)1 + cos ´Ë ∙ � ∙ (� − 1)2 · + n ∙ sin ´Ë ∙ � ∙ (� − 1)2 · 

       = 2D ∙ ((−1)D + 8) + nD∙(D'(), 
the statement of Corollary 2 follows. � 

4 The constant congruence speed of the prime numbers 

The set of the prime numbers is very important in many fields of mathematics due to the 

fundamental theorem of arithmetic (in particular it is central in number theory, computer sciences, 

and cryptography), so we are interested in knowing if the constant congruence speed of any base 

which is a prime number maps to every (arbitrarily large) value �(�) ∈ ℕ − �0�. 
 

Definition 3. Let � ∈ ℕ − �0� not be a multiple of 10. ℙ = �� ∈ ℕ ∶  � is prime� = �� ∶ � is prime� indicates the set of prime numbers (the last equality holds since 1 and every multiple 

of 10 cannot be prime). 
 

Definition 4. Ò⏞ = �((¡ + 1) ∙ 10D − 1) ∈ ℙ ∶  � ∈ ℕ − �0� ∧ ¡ ∈ ℕ
� and ÒÓ = �((2 ∙ ¡ +1) ∙ 10D − 1) ∈ ℙ ∶  � ∈ ℕ − �0� ∧ ¡ ∈ ℕ
�, so ÒÓ ⊆ Ò⏞ ⊂ ℙ. Additionally, let �⏞ ∶= (¡ +1) ∙ 10D − 1, and �Ö ∶= (2 ∙ ¡ + 1) ∙ 10D − 1. Furthermore, let �⏞∗ ∈ Ò⏞ (and, similarly, let �Ö∗ ∈ÒÓ) represent the generic element of Ò⏞ (respectively, ÒÓ). 
 

In order to confirm that the set ��(�) ∶  � ∈ ℙ� is not bounded above, let us firstly introduce 

the following lemma. 
 

Lemma 1. If � is sufficiently large to guarantee �(�⏞ , �) = �(�⏞), then �(�⏞) ≥ �,  ∀� ∈ ℕ − �0�. In particular, assuming � ≠ 1, �(�⏞) = � ⇔ ¡ ≢ 9(mod 10). 

Proof. Let � ≥ 2. The statement easily follows from Equation (7), since � ≥ 2 ⇒ �(10D − 1 +¡ ∙ 10D) = � for every ¡ ≢ 9(mod 10), while ¡ ≡ 9(mod 10) ⇒ �⏞ ≡ (10D,( −1)(mod 10D,() for any � as above. Thus, ¡ ≡ 9(mod 10) ⇔ �⏞∗
 belongs to AY(� + ]), where ] ∈ ℕ − �0�. 

If � = 1, ∀¡ ∈ ℕ
, �⏞ (¡) ≡ �4, 9, 14, 19, 24�(mod 25). Consequently [16], �(�⏞ (¡)) > 1 if 

and only if �⏞ (¡) ≡ 24(mod 25).  

Hence, �(�⏞ (¡)) ≠ 1 for any ¡ ≡ 4(mod 5), including the case ¡ ≡ 4(mod 10). 

Therefore, for any � ≥ 2, we have shown that �(�⏞) = � ⇔ ¡ ≢ 9(mod 10), while  � = 1 ⇒ �(�⏞ (¡)) = � if and only if ¡ ≢ 4(mod 5); since, ∀� ∈ ℕ − �0�, ¡ ≡ 4(mod 5) ⇒�(�⏞ (¡)) ≥ �, the proof of Lemma 1 is complete. � 
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Conjecture 2. ∀ �⏞∗ ∈ Ò⏞, � ≥ 2 ⇒ �(�⏞∗ , �) = �(�⏞∗). 
 

Remark 3. In order to show that ∃ �⏞∗ ∈ Ò⏞ ∶  �(�⏞∗ , 1) ≠ �(�⏞∗ , 2) = �(�⏞∗), we note that, for any 

given pair H ∈ ℕ − �0� and � ∈ ℕ − �0, 1�, �((10D − 1)9º , 1) ≠ �((10D − 1)9º , 2) =�((10D − 1)9º) (see [15], p. 25). Thus, as a random choice, it is sufficient to take any prime 

number of the form ] ∙ 10(
 + (104 − 1)9, ] ∈ ℕ − �0�, such as 2 ∙ 10(
 + (104 − 1)9 =295099005 ∙ 104 − 1 = 29509900499 ∈ Ò⏞. Since �(29509900499, 1) = 3 ≠ 2 =�(29509900499, 2), � have to be greater than 1. 

Checking for smaller candidates than �⏞∗ = ] ∙ 10(
 + 999, by Hensel’s lifting lemma, we 

can also see that any odd power of 499 ∈ Ò⏞ is congruent modulo 106 to 499, so 4997YY ≡499(mod 106) and 3 = �(499, 1) ≠ �(499, 2) = �(499) = 2 still holds. 
 

Theorem 2. ∀� ≢ 0(mod 10), ∃O �⏞∗ ∈ ℙ ∶  �(�⏞∗) ≥ �(�). 

Proof. Since �(�) indicates the constant congruence speed of � (by Definition 1, we are allowed 

to assume the sufficient but not necessary condition � ≥ � + 1), it follows that � ≢0(mod 10) ⇒ �(�) ∈ ℕ
. 

Let us invoke Dirichlet’s theorem on arithmetic progressions [17, 18], which implies that ∀(�, �) such that gcd(�, �) = 1, there is an infinite number of primes of the form � + R ∙ �, where R ∈ ℕ
. 

Now, for any H ∈ ℕ − �0�, let � ∶= �(H), and similarly let � ∶= �(H). In particular, assume 

(without loss of generality) �(H) = 10� − 1 and �(H) = 10� , since it is trivial to point out that 10� = 2� ∙ 5�, so 2 ∤ (10� − 1)  ∧  5 ∤ (10� − 1). 
By Lemma 1, we can state that �⏞ = �(H) + R ∙ �(H) is always characterized by a constant 

congruence speed �(�⏞) ≥ H. 

Anyway, in order to clearly show that �(�⏞) ≥ H holds, let ¯� ∈ �0, 1, 2, 3, 4, 5, 6, 7, 8, 9�. 

Hence, �⏞ = ∑ ¯�Ø�L� ∙ 10� + 10� − 1 = ¯Ø_¯(Ø'()'. . . _¯(�,()_ �̄_9_9_. . . _9_9,       (27) 

so it is evident that �(�⏞) only depends on the length of the rightmost repunit (9’s) of  10� < �⏞ < 10Ø,(. 

Thus, picking any � ≥ 2 such that �(�) is arbitrarily large, we have shown that there always 

exist infinitely many prime numbers �⏞∗ ≡ 9(mod 10) which are characterized by �(�⏞∗) ≥ �(�) 

( �̄ ≠ 9 ⇒ �(�⏞∗) = �(�) = H, see Equation (27)). 

Lastly, � = 1 ⟺ �(�) = 0 (see Reference [16], Definition 2), so �(�⏞∗) > �(1) for any �⏞∗ ∈ ℙ. 

Therefore, we can write that ∀�(�) ∈ ℕ, ∃ �⏞∗ ∈ ℙ ∶  �(�⏞∗) ≥ �(�), and this concludes the 

proof of Theorem 2 (since � ≢ 0(mod 10) ⇒ �(�, �) = �(�) ∈ ℕ
, ∀� > �). � 
 

Corollary 3. ∀�(�) ∈ ℕ
, ∃O �⏞∗ ∈ ℙ ∶  �(�⏞∗) > �(�). 

Proof. In order to prove this corollary of Theorem 2, it is sufficient to take � = �(�) + 1, so we 

have �⏞ = (¡ + 1) ∙ 100( ),( − 1 (by Definition 4). 
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Thus, �(�⏞) ≥ �(�) + 1 is satisfied for any �(�), ¡ ∈ ℕ
. 

It follows that �(�⏞∗) > �(�), and (by Dirichlet’s theorem on arithmetic progressions) we 

know that there are infinitely many bases �⏞∗ ∈ Ò⏞ ⊂ ℙ.             � 
 

Theorem 3. ∀� ≠ 1 ∶  � ≢ 0(mod 10), ∃O�Ö∗ ∈ ℙ ∶  �(�Ö∗) = �(�). 

Proof. (� ≠ 1 ∧  � ≢ 0(mod 10)) ⇒ �(�) ∈ ℕ − �0� [16]. By Dirichlet’s theorem on 

arithmetic progressions, gcd(�, �) = 1 ⇒ ∃O(� + R ∙ �) ∈ ℙ, where R ∈ ℕ
. Let �(H) = 10� −1 and �(H) = 2 ∙ 10�  be defined for every H ∈ ℕ − �0�. Since 2 ∙ 10� = 2�,( ∙ 5�  and 10� − 1 ≡9(mod 10), gcd(�(H), �(H)) = 1 (noticing again that 2 ∤ (10� − 1) ∧  5 ∤ (10� − 1)). 

Consequently, the arithmetic progression �(H) + R ∙ �(H) = 10� − 1 + 2 ∙ R ∙ 10� = (2 ∙R + 1) ∙ 10� − 1 contains infinitely many primes. Since, ∀R, 10 ∤ (2 ∙ R + 1), �(H) + R ∙�(H) = ∑ ¯�Ø�L� ∙ 10� + 10� − 1 = ¯Ø_¯(Ø'()'. . . _¯(�,()_ �̄_9_9_. . . _9_9, where �̄ ∈�0, 2, 4, 6, 8�. By Equation (7), for any given H ≥ 2, it follows that �((2 ∙ R + 1) ∙ 10� − 1) = H 

holds for all integers R ≥ 0. 
Finally, if �(�) = 1, then let R ≡ 1(mod 10). Dirichlet’s theorem on arithmetic 

progressions implies the existence of infinitely many primes congruent modulo 100 to 29, and 

we know that all of them have a unitary constant congruence speed (since 29 ≡ 4(mod 25), � ≡4(mod 25) ⇒ �(�) = 1). It follows that ∃O] ∈ ℕ
 such that ((] ∙ 20 + 3) ∙ 10 − 1) ∈ ÒÓ. Since �((] ∙ 20 + 3) ∙ 10 − 1) = 1 for every ], we have just proved that ∀] ∈ ℕ
 ∶ ((] ∙ 20 + 3) ∙10 − 1) ∈ ℙ , ∃�Ö∗(]) ∈ ÒÓ ∶  �(�Ö∗(])) = 1. 

Thus, ∀ H ∈ ℕ − �0�, ∃OR ∈ ℕ
 ∶  ((2 ∙ R + 1) ∙ 10� − 1) ∈ ℙ ∧  �((2 ∙ R + 1) ∙ 10� −1) = H, and this completes the proof of Theorem 3.  � 
 

 

Theorem 3 entails the existence of an infinite sequence of primes, which we indicate as �»D�, 

defined by the smallest prime numbers characterized by a constant congruence speed of � ∈ ℕ −�0�. 

More specifically, �»D� = 2, 5, 193, 1249, 22943, 2218751, . . . is not a monotonic 

sequence, because »4
 = 3640476581907922943 < 23640476581907922943 = »(Y, and 

also »97 = /2 ∙ 54§� − 11(mod 1094) < »94 = −(54§� + 29§�)(mod 1094) < »96 = 2 ∙ 1096 −1 (see Table 2 below). 

As an exercise, we can try to bound the value of »(WV4
V6. Since Theorem 3 implies that »(WV4
V6 ∈ ℕ, let us find a lower bound from the inequalities stated in Section 2.2, and in 

particular we get »(WV4
V6 > √5(WV4
V6 − 1. From [1], we know that 9 ∙ 10(WV4
V6 − 1 =∑ 8(WV4
V6�L(WV4
V6 ∙ 10� + 10(WV4
V6 − 1 is prime, and 9 ∙ 10(WV4
V6 − 1 = 9 ∙ 100(Y∙(
#qÙ�~Ùp'() − 1 

has a constant congruence speed of 1762063. It follows that √5 ∙ 5XX(
6( < »(WV4
V6 ≤ 9 ∙10(WV4
V6 − 1 (since 2 ∤ � ∈ ℕ − �0� ⇒ √5D ∉ ℕ). 
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 À �ÚÀ� 

1 2 

2 5 

3 193 

4 1249 

5 22943 

6 2218751 

7 4218751 

8 74218751 

9 574218751 

10 30000000001 

11 281907922943 

12 581907922943 

13 6581907922943 

14 123418092077057 

15 480163574218751 

16 19523418092077057 

17 40476581907922943 

18 2152996418333704193 

19 23640476581907922943 

20 3640476581907922943 

21 803640476581907922943 

… … 

51 138023544317662666830362972182803640476581907922943 

52 56138023544317662666830362972182803640476581907922943 

53 199999999999999999999999999999999999999999999999999999 

54 1114846846461792218008213239954784512519836425781249 

Table 2. �»D� for � ≤ 21 and 51 ≤ � ≤ 54. Table entries are in red if (and only if) 

 »D < »D'(, so »4
 < »(Y (as »9( < »9
), and »97 < »96 imply that �»D� is a  

non-monotonic sequence of primes. Furthermore, we have also »97 < »94. 
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5 Conclusion 

�(�, �), the congruence speed of the integer tetration �� , certainly does not depend on �, for any � ∈ ℕ − �0� which is not a multiple of 10, if � is larger than � (i.e., the criterion � > � always 

holds). Thus, let us take any � = �(�) that assures the constancy of the congruence speed of �; 

then Equations (6), (7), (10), (11), (14), (15), (16), (17), (18), and (26) return the set of all the 

bases whose (constant) congruence speed is any given �(�) ∈ ℕ − �0�, and we know from [16] 

that �(�) = 0 ⇔ � = 1. 

Therefore, we can easily determine �P/�(�)1, the smallest a ≡ {1, 2, 3, 4, 5, 6, 7, 8, 9} (mod 10) 

whose constant congruence speed is equal to any given positive integer. Since �P(0) = 1, �P(1) =2, and �P(�(�) ≥ 2) = 2D ∙ ((−1)D'( + 2) − nD∙(D'() [14], we can finally conclude that the 

conjecture stated in Reference [16] is true. 

In Section 4, for any � ∈ ℕ − �0�, we also proved the existence of infinitely many prime 

numbers with a constant congruence speed of �, defining the related sequence �»D� of the smallest 

primes such that �(»(�)) = �, and consequently showing that �»D� is not monotonic. 

In the present paper we have only considered radix-10, but our results can be clearly extended 

to different numeral systems, as shown by [2] which was inspired by [19]; this observation 

suggests a topic for the next research article. 
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