Determinantal representations for the number of subsequences without isolated odd terms

Milica Anđelic and Carlos M. da Fonseca
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 116–121
DOI: 10.7546/nntdm.2021.27.4.116-121
Full paper (PDF, 157 Kb)

Details

Authors and affiliations

Milica Anđelic
Department of Mathematics, Kuwait University
Safat 13060, Kuwait

Carlos M. da Fonseca
Kuwait College of Science and Technology
Doha District, Safat 13133, Kuwait

Chair of Computational Mathematics, University of Deusto
48007 Bilbao, Basque Country, Spain

Abstract

In this short note we propose two determinantal representations for the number of subsequences without isolated odd terms are presented. One is based on a tridiagonal matrix and other on a Hessenberg matrix. We also establish a new explicit formula for the terms of this sequence based on Chebyshev polynomials of the second kind.

Keywords

  • Tridiagonal 2-Toeplitz matrices
  • Determinant
  • Hessenberg matrices
  • Chebyshev polynomials of the second kind
  • Recurrence relation

2020 Mathematics Subject Classification

  • 11B37
  • 11B39
  • 15B36
  • 15A15

References

  1. Anđelic, M., Du, Z., da Fonseca, C. M., & Kılıc, E. (2020). Second-order  difference equations with sign-alternating coefficients. Journal of Difference Equations and Applications, 26(2), 149–162.
  2. Anđelic, M., & da Fonseca, C. M. (2021). On the constant coefficients of a certain recurrence relation: A simple proof. Heliyon, 7(8), Article e07764.
  3. Carson, T. R. (2007). Periodic recurrence relations and continued fractions. The Fibonacci Quarterly, 45, 357–361.
  4. Du, Z., Dimitrov, D., & da Fonseca, C. M. (2021). New strong divisibility sequences. Ars Mathematica Contemporanea, DOI: 10.26493/1855-3974.2473.f2e (to appear).
  5. Elliott, J. F. (1953). The characteristic roots of certain real symmetric matrices (Master’s thesis, University of Tennessee, United States). Retrieved from https://trace.tennessee.edu/utk_gradthes/2384
  6. Elsner, L., & Redheffer, R. M. (1967). Remarks on band matrices. Numerische Mathematik, 10, 153–161.
  7. da Fonseca, C. M., & Petronilho, J. (2001). Explicit inverses of some tridiagonal matrices. Linear Algebra and its Applications, 325, 7–21.
  8. da Fonseca, C. M., & Petronilho, J. (2005). Explicit inverse of a tridiagonal k-Toeplitz matrix. Numerische Mathematik, 100, 457–482.
  9. Gover, M. J. C. (1994). The eigenproblem of a tridiagonal 2-Toeplitz matrix. Linear Algebra and its Applications, 197/198, 63–78.
  10. Gover, M. J. C., & Barnett, S. (1985). Inversion of Toeplitz matrices which are not strongly singular. IMA Journal of Numerical Analysis, 5, 101–110.
  11. Guy, R.K., & Moser, W.O.J. (1996). Numbers of subsequences without isolated odd members. The Fibonacci Quarterly, 34, 152–155.
  12. Janjic, M. (2012). Determinants and recurrence sequences. Journal of Integer Sequences, 15, Article 12.3.5.
  13. Lovass-Nagy, V., & Rozsa, P. (1963). Matrix analysis of transient voltage distributions in alternating ladder networks. Proceedings of the Institution of Electrical Engineers, 110, 1663–1670.
  14. Rozsa, P. (1969). On periodic continuants. Linear Algebra and its Applications, 2, 267–274.
  15. Rutherford, D. E. (1947). Some continuant determinants arising in physics and chemistry. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 62, 229–239.
  16. Sloane, N. J. A. (2019). The On-Line Encyclopedia of Integer Sequences, Available online at: https://oeis.org/.
  17. Verde-Star, L. (2017). Polynomial sequences generated by infinite Hessenberg matrices. Special Matrices, 5, 64–72.

Related papers

Cite this paper

Anđelic, M. & da Fonseca, C. M. (2021). Determinantal representations for the number of subsequences without isolated odd terms. Notes on Number Theory and Discrete Mathematics, 27(4), 116-121, DOI: 10.7546/nntdm.2021.27.4.116-121.

Comments are closed.