
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 27, 2021, No. 4, 116–121
DOI: 10.7546/nntdm.2021.27.4.116-121

Determinantal representations for the number
of subsequences without isolated odd terms
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1 The sequence

In 1996, Guy and Moser considered in [11] the sequence {zn}n>0 of the number of subsequences
of {1, . . . , n} in which each odd number has an even neighbour or, equivalently, every odd
member is accompanied by at least one even neighbour. The empty sequence is allowable. It
has been coined in The On-Line Encyclopedia of Integer Sequences [16] as A007455.
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The first terms of this sequence are

1, 1, 3, 5, 11, 17, 39, 61, 139, 217, 495, 773, 1763, 2753, . . .

and it satisfies the recurrence relations

zn =

 2zn−1 + zn−3, if n is even

3zn−2 + 2zn−4, if n is odd,
(1)

with initial conditions z0 = z1 = 1, z2 = 3, z3 = 5.
In [11] one can find several tables involving the sequence {zn}, as for example the one for the

number of subsequences of length 0, . . . , n:

n zn
0 1 1

1 1 0 1

2 1 1 1 3

3 1 1 2 1 5

4 1 2 4 3 1 11

5 1 2 5 5 3 1 17

6 1 3 8 11 10 5 1 39

7 1 3 9 14 16 12 5 1 61

8 1 4 13 25 35 33 20 7 1 139

This sequence satisfies also interesting identities, namely 2z2k = z2k+1 + z2k−1, and it is not
hard to see that it fulfils the unique recurrence relation

zn = 3zn−2 + 2zn−4 , (2)

as asserted in [11].
For explicit formulas, in [11] it is claimed that

z2k =

(
17 + 3

√
17

34

)(
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2

)k

+

(
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)(
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2
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(
17 + 7
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17

34

)(
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17

2

)k

+

(
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34
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Our aim here is to provide two determinantal interpretations for the recurrence (1) in terms of
a tridiagonal 2-Toeplitz matrix and other, perhaps more natural, of a Hessenberg matrix.
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2 Tridiagonal 2-Toeplitz matrices

The matrices of the form

T (2)
n =



p1 1

q1 p2 1

q2 p1 1

q1 p2 1

q2
. . . . . .
. . . . . . . . .

. . . . . .


n×n

, (3)

i.e., tridiagonal matrices (aij) with entries satisfying the periodic equality

ai+2,j+2 = aij , for i, j = 1, 2, . . . , n− 2 ,

are known as tridiagonal 2-Toeplitz [7, 10]. If instead of a period 2, we have a generic period
k, these matrices are called tridiagonal k-Toeplitz [8] and the determinant is known as periodic
continuant [14]. The study of these matrices goes back to 1947 Rutherford’s seminal paper [15].
Their determinant and spectral properties were studied independently in distinct contexts (cf.
[1, 4–8, 10, 13]).

It is known (see, e.g., [9, 14, 15]) that the determinant of these matrices is given by

detT
(2)
2` = (

√
q1q2)

`

(
U`

(
p1p2 − q1 − q2

2
√
q1q2

)
+

√
q2√
q1
U`−1

(
p1p2 − q1 − q2

2
√
q1q2

))
(4)

and

detT
(2)
2`+1 = p1(

√
q1q2)

` U`

(
p1p2 − q1 − q2

2
√
q1q2

)
, (5)

where {Un(x)}n>0 are the Chebyshev polynomials of the second kind of order n, that is, the
orthogonal polynomials satisfying the three-term recurrence relations

Un+1(x) = 2xUn(x)− Un−1(x) = 0 , for n = 0, 1, 2, . . . , (6)

with initial conditions U−1(x) = 0 and U0(x) = 1. One of the most well-known explicit formulas
for these polynomials is

Un(x) =
sin(n+ 1)θ

sin θ
, with x = cos θ (0 6 θ < π),

for all n = 0, 1, 2 . . . .
Let us consider the sequence {fn}n>0 satisfying the recurrence relation

fn =

 fn−1 + 2fn−2, if n is even

2fn−1 − fn−2, if n is odd,
(7)

for n > 2, with initial conditions f0 = f1 = 1. Clearly,

118



fn = det



1 1

1 2 1

−2 1 1

1 2 1

−2 . . . . . .
. . . . . .


(n+1)×(n+1)

. (8)

This means that, from (4)–(5), we have

f2`−1 = (−i
√
2)`
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(
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and, otherwise,

f2` = (−i
√
2)` U`

(
3i
√
2

4

)
, (10)

The interesting fact is that, using elementary operations, we can show that {fn} and {zn} are
exactly the same sequence. Therefore, {zn} can be defined in terms of the determinants of the
family of tridiagonal 2-Toeplitz matrices (8) as well as in the explicit form (9)–(10). If we take
into account [2, 3], from (7) we immediately get (2).

3 Hessenberg matrices

In this brief section, we present a natural family of Hessenberg matrices whose determinants
provide the sequence {zn}. Since the recurrences (1) can be stated in terms of a single homogeneous
linear recurrence relation, we can conclude (cf., e.g., [12, 17]) that

zn+1 = detHn,

with

Hn =



1 1 3 5

−1 0 0 0 0

−1 0 0 1 2

−1 0 0 0 0

−1 2 3 1 2

−1 0 0 0 0

−1 2 3 1 2

−1 0 0 0
. . .

. . . . . . . . . . . .
. . . . . . . . .


n×n

.

To the best of our knowledge, this simple determinantal representation for {zn} is also new.
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4 Conclusion

In this note, two determinantal representations for the sequence of the number of subsequences
of {1, . . . , n} in which each odd number has an even neighbour. We propose an alternative
recurrence relation for such sequence as well as a new explicit formula based on Chebyshev
polynomials of the second kind.
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[1] And̄elić, M., Du, Z., da Fonseca, C. M., & Kılıç, E. (2020). Second-order
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