Kailash M. Patil
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 1, Pages 138–147
DOI: 10.7546/nntdm.2021.27.1.138-147
Full paper (PDF, 236 Kb)
Details
Authors and affiliations
Kailash M. Patil
Department of Mathematics, Dharmsinh Desai University
Nadiad, Gujarat 387001, India
Abstract
We define higher order rhotrices over a commutative unital ring and obtain a ring of rhotrices of the order . We characterize the ideals and maximal ideals of . As a particular case, we record ideals of rhotrix rings over integers and rhotrix algebras over complex plane . As an application, we characterize the maximal ideals of the commutative unital Banach algebra .
Keywords
- Rhotrix over a ring
- Unital ring
- Maximal ideal
- Banach algebra
2010 Mathematics Subject Classification
- 15B99
- 46J20
References
- Ajibade, A. O. (2003). The concept of rhotrix in mathematical enrichment. International Journal of Mathematical Education in Science and Technology, 34(2), 175–179.
- Atanassov, K. T., & Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercises in Mathematical Enrichment. International Journal of Mathematical Education in Science and Technology, 29, 898–903.
- Bhatt, S. J., & Karia, D. J. (1998). A note on Banach algebras without order. Prajna Journal of Sardar Patel University, 8(1), 30–32.
- Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24(2), 125–133.
- Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206–219.
- Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract structures. International Journal of Physical Sciences, 4(9), 496–499.
- Mohammed, A. (2011). Theoretical Development and Applications of Rhotrices. PhD thesis, Ahmadu Bello University, Zaria.
- Mohammed, A., & Okon, U. E. (2016). On subgroups of non-commutative general rhotrix group. Notes on Number Theory and Discrete Mathematics, 22(2), 72–90.
- Patil, K. M., Singh, H. P., & Sutaria, K. A. (2015). The eigen values of any given 3×3 matrix via eigen values of its corresponding rhotrix. International Journal of Computer and Mathematical Sciences, 4(11), 1–4.
- Sani, B. (2007). The row-column multiplication of high dimensional rhotrices. International Journal of Mathematical Education in Science and Technology, 38(5), 657–662.
- Sani, B. (2008). Conversion of a rhotrix to a ‘coupled matrix’. International Journal of Mathematical Education in Science and Technology, 39(2), 244–249.
- Sharma, P. L. & Kanwar, R. K. (2012). The Cayley–Hamilton theorem for rhotrices. International Journal Mathematics and Analysis, 4(1), 171–178.
- Usaini, S. & Aminu, A. (2017). Exponential function of rhotrices. International Journal of Mathematics and Statistics, 18(1), 21–29.
Related papers
- Mohammed, A., & Okon, U. E. (2016). On subgroups of non-commutative general rhotrix group. Notes on Number Theory and Discrete Mathematics, 22(2), 72-90.
- Isere, A. O. (2018). Even dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24(2), 125-133.
- Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206-219.
- Atanassov, K. T. (2023). On tertions and other algebraic objects. Notes on Number Theory and Discrete Mathematics, 29(4), 861-880.
Cite this paper
Patil, K. M. (2021). Characterization of ideals of rhotrices over a ring and its applications. Notes on Number Theory and Discrete Mathematics, 27(1), 138-147, DOI: 10.7546/nntdm.2021.27.1.138-147.