**Burak Kurt**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 3, Pages 74–82

DOI: 10.7546/nntdm.2020.26.3.74-82

**Full paper (PDF, 206 Kb)**

## Details

### Authors and affiliations

Burak Kurt

*Mathematics of Department, Akdeniz University
Antalya TR-07058, Turkey*

### Abstract

We introduce and investigate the Hermite-based poly-Euler polynomials with a *q*-parameter. We give some basic properties and identities for these polynomials. Furthermore, we prove two explicit relations.

### Keywords

- Bernoulli polynomials and numbers
- Euler polynomials and numbers
- 2-variable Hermite–Kampé de Feriét polynomials
- Polylogarithm function
- Poly-Euler polynomials
- Stirling numbers of the second kind

### 2010 Mathematics Subject Classification

- 11B68
- 11B73
- 33C45

### References

- Bayad, A., & Hamahata, Y. (2011). Polylogarithms and poly-Bernoulli polynomials,
*Kyushu J. Math*., 65, 15–34. - Bayad, A., & Kim, T. (2012). Higher Recurrences for Apostol–Bernoulli–Euler polynomials,
*Russ. J. of Math. Phys.*, 19 (1), 1–10. - Cenkci, M., & Komatsu, T. (2015). Poly-Bernoulli numbers and polynomials with a
*q*-parameter,*J. Number Theory*, 152, 38–54. - Duran, U., & Acikgoz, M. (2018). On (
*p*,*q*)-Euler numbers and polynomials associated with (*p*,*q*)-Volkenborn integral,*Int. J. of Number Theory*, 14 (1), 241–253. - Duran, U., Acikgoz, M., & Araci, S. (2018). Hermite based poly-Bernoulli polynomials with
*q*-parameter,*Advanced Stud. in Contemp. Math.*, 28 (2), 285–296. - Duran, U., Acikgoz, M., Esi, A., & Araci, S. (2018). A note on the (
*p*,*q*)-Hermite

polynomials,*App. Math. and Information Sciences*, 12, 227–231. - Hamahata, Y. (2014). Poly-Euler polynomials and Arakawa–Kaneko type zeta functions,
*Functione et. App. Commentarii Mathematica*, 51 (1), 7–27. - Jolany, H., Corcino, R. B., & Komatsu, T. (2015). More properties on multi-Poly-Euler polynomials,
*Bull. Soc. Math. Mex*., 21, 149–162. - Kim, D. S., & Kim, T. (2012). Some identities of Frobenius–Euler polynomials arising from umbral calculus,
*Advances in Diff. Equa*., 2012, Article No. 196. - Kim, D. S., & Kim, T. (2013). Higher-order Frobenius–Euler and Poly-Bernoulli mixed type polynomials,
*Advances in Diff. Equa*., 2013, Article No. 251. - Kim, D. S., & Kim, T.(2015). A note on poly-Bernoulli and higher order poly-Bernoulli polynomials,
*Russ. J. Math.*, 22 (1), 26–33. - Kim, D. S., & Kim, T. (2015). Higher order Bernoulli and poly-Bernoulli mixed type polynomials,
*Georgian Math. J.*, 22, 265–272. - Kim, D. S., Kim, T., Dolgy, D. V., & Rim, S. H. (2013). Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus,
*Advances in Diff. Equa*., 2013, Article No. 73. - Kim, D. S., & Kim, T. (2013). Hermite and Poly-Bernoulli mixed type polynomials,
*Advances in Diff. Equa.*, 2013, Article No. 343. - Kim T., Kim D. S., Kim H. Y., & Jang L.-C. (2020). Degenerate poly-Bernoulli numbers and polynomials,
*Informatica*, 31 (3), 2–8. - Kurt, B. (2018). Identities and relation on the Poly-Genocchi polynomials with a

*q*-parameter,*J. Inequa. Special Func.*, 9 (1), 1–8. - Kurt, B. & Simsek, Y. (2013). On the generalized Apostol-type Frobenius–Euler

polynomials,*Advances in Diff. Equa.*, 2013, Article No. 1. - Ozarslan, M. A. (2013). Hermite-based unified Apostol–Bernoulli, Euler and Genocchi polynomials,
*Advances in Diff. Equa.*, 2013, Article No. 116. - Sanchez-Peregrino, R. (2002). Closed formula for Poly-Bernoulli numbers,
*Fibonacci Quart.*, 40, 362–364. - Srivastava, H. M. (2011). Some generalization and basic (or
*q*−) extension of the

Bernoulli, Euler and Genocchi polynomials,*App. Math. Inform. Sci.*, 5 (3), 390–444. - Srivastava, H. M. & Choi, J. (2001).
*Series Associated with the Zeta and Related Functions*, Kluwer Academic Pub., Dordrecht, Boston and London. - Srivastava, H. M. & Manocho, H. L. (1984)
*A Treatise on Generating Functions*, Halsted Press, Chichester, West Sussex, England.

## Related papers

## Cite this paper

Kurt, B. (2020). Notes on the Hermite-based poly-Euler polynomials with a *q*-parameter. *Notes on Number Theory and Discrete Mathematics*, 26(3), 74-82, DOI: 10.7546/nntdm.2020.26.3.74-82.