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1 Introduction

As usual, throughout this paper, N denotes the set of natural numbers, Ny denotes the set of
nonnegative integers, Z denotes the set of integer numbers, R denotes the set of real numbers and
C denotes the complex numbers.

In the usual notations, let B, (z) and F,(x) denotes respectively, the classical Bernoulli
polynomials and the classical Euler polynomials in x defined by the following generating
functions, respectively;
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Also, let z = 0, B,(0) = B, and E,,(0) = E,, where B,, and E,, are respectively, the Bernoulli
numbers and the Euler numbers.
The 2-variable Hermite—Kampé de Feriét polynomials are defined by (see [5, 16, 18])
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so that, obviously, we have the following relationships:

Hoy(22,—1) = H, (x) and H,(z) = (é)an(—m\/@ y). (i = v=1) @)

with the classical Hermite polynomials H,,(z), n € Nj.
Let k € Z, k > 1, the k-th polylogarithm function is defined by (see [1,3,7,11,16])
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when k =1, Liy(z) = —log(1 — 2). In the case k < 0, Lij(z) are the rational functions:
z z 224z
Lig(z) = ——, Li_1(2) = ———, Li_s(2) =

Further information about polylogarithm function and polynomials (see [1-16]).
Hamahata in [7] defined the poly-Euler polynomials by

= " 2Li(1 —e™)
g(k) i k xt 6
28 = ey (©)

for k = 1, we have &(Lk)(x) = E,(z).
Cenkci et al. in [3] defined the weighted Stirling numbers of the second kind as

¢ (6_1 ZSgnkx (7)

Duran et al. in [5] defined the Hermite-based A-Stirling polynomials of the second kind as

(Aet —1)"
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The special values of the (8) are given in [5].
Letn, k € Z,n > 0,k > 0and ¢ € R\ {0}. We define the Hermite-based poly-Euler
polynomials with a g-parameter by the following generating functions:

) o s (1—e” 9
Z Hg k) _ QQLZk( q ) €$t+yt2 ) (9)
nal ! t(1+ edt)

n=0

Forx =y = 0, we get H&Q 2(0,0) = Hé’n .¢ which is called a new class of the Hermite-based
poly-Euler numbers with a ¢g-parameter. Some special cases of H&S,q (z,y) are following remarks.
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Remark 1. For y = 0, we have &) (x,0) = S,Sq)( ) called the Hermite-based poly-Euler
polynomials with a g-parameter.

Remark 2. For g =1, ng(qu) (x,y) reduces to the Hermite-based poly-Euler polynomials.

Remark 3. Forg =1andy =0, H&(Jfg (x,y) reduces to poly-Euler polynomials which is defined
Hamahata in [7].

Remark 4. When ¢ = £ = 1 and y = 0, we obtain the classical Euler polynomials.

Srivastava and Srivastava et al. in [20, 21] investigated some properties and proved some
theorems for the Bernoulli, Euler and Genocchi polynomials. D. S. Kim ef al. in [9-14] and T.
Kim et al. in [15] introduced the poly-Bernoulli polynomials and gave some recurrences relations
and identities. Cenkci ef al. in [3] gave the poly-Bernoulli polynomials with a g-parameter. Kurt
[16] gave the poly-Genocchi polynomials with a g-parameter. Duran et al. in [4—6] considered
the (p, ¢)-Hermite polynomials and the (p, ¢)-Euler polynomials.

2 Main theorems

In this section, we give some basic identities and relations for the Hermite-based poly-Euler
polynomial with a g-parameter. Further we give closed formula and explicit relation for these
polynomials.

Theorem 2.1. The Hermite-based poly-Euler polynomials with a q-parameter satisfy the follow-
ing relation:

n

n
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The proof of this theorem is easily obtained from (9).

Theorem 2.2. The following relation holds true:

- n
6<’2<x,y>+z(v) 0 g€ ()
m+1

2i kZC"“) 1) H, (a — qr.y). (10)
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Proof. By (3), (5) and (9), we write as

" o (1—e?
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The left-hand side of this equation is

o n tn
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The right-hand side of this equation is
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From (11) and (12), we obtain (10). L]

Theorem 2.3. The following relation between the Hermite-based poly-Euler polynomials with a
q-parameter and the Euler polynomials holds:

1<~ (n x T
(k) — E (k) n—m
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m=0

Proof. By (2) and (9), we write
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By using Cauchy product and comparing the coefficients of , we have (13). ]

Theorem 2.4. The following relation between the Hermite-based poly-Euler polynomials with a

q-parameter and the Bernoulli polynomials holds:

WD () = > <:;) HEWS,(0.) {—Bnm (g) + Bum (1 + g) } @ (14

m=0

77



Proof. From (1) and (9), we write as:
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By using Cauchy product and comparing the coefficients of , we have (14).

Theorem 2.5. The following relations hold true:
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From here, we have (15).

Corollary 2.5.1. We have the following relation from (10) and (15):
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Theorem 2.6. The followmg relationship between the Hermite-based poly-Euler polynomials

with a q-parameter and the Stirling numbers of the second kind holds:

an‘J( 14(T,Y) +Z( )" chS’ 1q(l“y)

= 2 Z Tn'(;ynkn Z <n) qrimHn*T (QZ, y) <S2 (Ta m, 1) - S2 (7’, m)) . (16)

r
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Proof. By (7) and (9), we write as:

ZnHEnquy +ethn g®) )t

1 — et
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The left-hand side of this equation is
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By using Cauchy product, we have
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From (17) and (18), we get (16).
Theorem 2.7. The following relation holds true:

Hgn—l—mq z y ZZ ( > ( > U)P+T Hgélzm—p—r,q(xuy>'
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Proof. By (9),
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We replace ¢ by ¢ 4 u in (20)
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From this equation, we write as

2 Li 1—e—a(t+u)
t L < q y(t-+u)?
Z Z H5n+mq ,9) il € T tru) (1t 6q(t+u))6 : 2D
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In the last equation, we replace = by v, we get
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By (21) and (22), we write
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Now, by applying the following known series identity [22, p.52, Eq. 1.6(2)]

(x +
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in the right-hand side of (23), we get
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Finally, upon first replacing n by n — p and m by m — r by using the Cauchy product in the
left-hand side of the above equation (25) and comparing the coefficients of — and —pon both
sides of the resulting equation, we have (19). ]

Theorem 2.8 (Closed Formula). The following relation holds true:

m1n
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Proof. By replacing k by (—k) in (9). We get
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For A =1 and j = 2in (8), we get

m)!

> tn t_1)™
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We put the equation (8) and (28) in (27). We have
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From the last equation, comparing the coefficients of — and , we have (26). ]
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