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1 Introduction

As usual, throughout this paper, N denotes the set of natural numbers, N0 denotes the set of
nonnegative integers, Z denotes the set of integer numbers, R denotes the set of real numbers and
C denotes the complex numbers.

In the usual notations, let Bn(x) and En(x) denotes respectively, the classical Bernoulli
polynomials and the classical Euler polynomials in x defined by the following generating
functions, respectively;

∞∑
n=0

Bn(x)
tn

n!
=

t

et − 1
ext, |t| < 2π (1)

and
∞∑
n=0

En(x)
tn

n!
=

2

et + 1
ext, |t| < π. (2)
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Also, let x = 0, Bn(0) = Bn and En(0) = En, where Bn and En are respectively, the Bernoulli
numbers and the Euler numbers.

The 2-variable Hermite–Kampé de Feriét polynomials are defined by (see [5, 16, 18])

∞∑
n=0

Hn(x, y)
tn

n!
= ext+yt

2

(3)

so that, obviously, we have the following relationships:

Hn(2x,−1) = Hn(x) and Hn(x) =

(
i
√
y

)n
Hn(−2ix

√
y, y),

(
i =
√
−1
)

(4)

with the classical Hermite polynomials Hn(x), n ∈ N0.
Let k ∈ Z, k > 1, the k-th polylogarithm function is defined by (see [1, 3, 7, 11, 16])

Lik(z) =
∞∑
m=1

zm

mk
, z ∈ C, z > 1 (5)

when k = 1, Li1(z) = − log(1− z). In the case k ≤ 0, Lik(z) are the rational functions:

Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, Li−2(z) =

z2 + z

(1− z)3
, · · · .

Further information about polylogarithm function and polynomials (see [1–16]).
Hamahata in [7] defined the poly-Euler polynomials by

∞∑
n=0

E (k)n (x)
tn

n!
=

2Lik(1− e−t)
t (et + 1)

ext, (6)

for k = 1, we have E (k)n (x) = En(x).
Cenkci et al. in [3] defined the weighted Stirling numbers of the second kind as

ext (et − 1)
k

k!
=
∞∑
n=0

S2(n, k, x)
tn

n!
. (7)

Duran et al. in [5] defined the Hermite-based λ-Stirling polynomials of the second kind as

(λet − 1)
m

m!
ext+yt

j

=
∞∑
n=0

S
(λ,j)
2 (n,m, x, y)

tn

n!
. (8)

The special values of the (8) are given in [5].
Let n, k ∈ Z, n ≥ 0, k > 0 and q ∈ R� {0}. We define the Hermite-based poly-Euler

polynomials with a q-parameter by the following generating functions:

∞∑
n=0

HE (k)n,q (x, y)
tn

n!
=

2qLik(
1−e−qt

q
)

t (1 + eqt)
ext+yt

2

. (9)

For x = y = 0, we get HE (k)n,q (0, 0) = HE (k)n,q which is called a new class of the Hermite-based
poly-Euler numbers with a q-parameter. Some special cases of HE (k)n,q (x, y) are following remarks.
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Remark 1. For y = 0, we have HE (k)n,q (x, 0) = HE (k)n,q (x) called the Hermite-based poly-Euler
polynomials with a q-parameter.

Remark 2. For q = 1, HE (k)n,q (x, y) reduces to the Hermite-based poly-Euler polynomials.

Remark 3. For q = 1 and y = 0, HE (k)n,q (x, y) reduces to poly-Euler polynomials which is defined
Hamahata in [7].

Remark 4. When q = k = 1 and y = 0, we obtain the classical Euler polynomials.

Srivastava and Srivastava et al. in [20, 21] investigated some properties and proved some
theorems for the Bernoulli, Euler and Genocchi polynomials. D. S. Kim et al. in [9–14] and T.
Kim et al. in [15] introduced the poly-Bernoulli polynomials and gave some recurrences relations
and identities. Cenkci et al. in [3] gave the poly-Bernoulli polynomials with a q-parameter. Kurt
[16] gave the poly-Genocchi polynomials with a q-parameter. Duran et al. in [4–6] considered
the (p, q)-Hermite polynomials and the (p, q)-Euler polynomials.

2 Main theorems

In this section, we give some basic identities and relations for the Hermite-based poly-Euler
polynomial with a q-parameter. Further we give closed formula and explicit relation for these
polynomials.

Theorem 2.1. The Hermite-based poly-Euler polynomials with a q-parameter satisfy the follow-
ing relation:

HE (k)n,q (x, y) =
n∑

m=0

(
n

m

)
HE (k)m,q Hn−m(x, y),

HE (k)n,q (x1 + x2, y1 + y2) =
n∑

m=0

(
n

m

)
HE (k)m,q(x1, y1) HE

(k)
n−m,q(x2, y2)

and

HE (k)n,q (x, y) = n!

⌊
n
2

⌋∑
m=0

HE (k)n−2m,q(x)

(n− 2m)!m!
ym.

The proof of this theorem is easily obtained from (9).

Theorem 2.2. The following relation holds true:

n HE (k)n,q (x, y) +
n∑
v=0

(
n

v

)
qn−vv HE (k)v−1,q(x, y)

= 2
∞∑
m=0

1

qm (m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)rHn (x− qr, y) . (10)
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Proof. By (3), (5) and (9), we write as

∞∑
n=0

n HE (k)n−1,q(x, y)
tn

n!

(
eqt + 1

)
= 2qLik

(
1− e−qt

q

)
ext+yt

2

.

The left-hand side of this equation is

∞∑
n=0

{
n HE (k)n−1,q(x, y) +

n∑
v=0

(
n

v

)
qn−vv HE (k)v−1,q(x, y)

}
tn

n!
. (11)

The right-hand side of this equation is

2q
∞∑
m=0

(1− e−qt)m+1

qm+1

1

(m+ 1)k

∞∑
n=0

Hn (x, y)
tn

n!

= 2
∞∑
m=0

1

qm (m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)r et(x−qr)+yt2

= 2
∞∑
n=0

{
∞∑
m=0

1

qm (m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)rHn (x− qr, y)

}
tn

n!
. (12)

From (11) and (12), we obtain (10).

Theorem 2.3. The following relation between the Hermite-based poly-Euler polynomials with a
q-parameter and the Euler polynomials holds:

HE (k)n,q (x, y) =
1

2

n∑
m=0

(
n

m

)
HE (k)m,q(0, y)q

n−m
(
En−m

(
x

q
+ 1

)
+ En−m

(
x

q

))
. (13)

Proof. By (2) and (9), we write

∞∑
n=0

HE (k)n,q (x, y)
tn

n!
=

2qLik

(
1−e−qt

q

)
t (eqt + 1)

eyt
2 eqt + 1

2

2

eqt + 1
e

x
q
qt

=
1

2

{
∞∑
m=0

HE (k)m,q(0, y)
tm

m!

∞∑
l=0

El

(
x

q
+ 1

)
ql
tl

l!

+
∞∑
m=0

HE (k)m,q(0, y)
tm

m!

∞∑
l=0

El

(
x

q

)
ql
tl

l!

}
.

By using Cauchy product and comparing the coefficients of tn

n!
, we have (13).

Theorem 2.4. The following relation between the Hermite-based poly-Euler polynomials with a
q-parameter and the Bernoulli polynomials holds:

HE (k)n−1,q(x, y) =
1

n

n∑
m=0

(
n

m

)
HE (k)m,q(0, y)

{
−Bn−m

(
x

q

)
+Bn−m

(
1 +

x

q

)}
qn−m−1. (14)
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Proof. From (1) and (9), we write as:

∞∑
n=0

HE (k)n,q (x, y)
tn

n!
=

2qeyt
2
Lik

(
1−e−qt

q

)
t (eqt + 1)

1− eqt

q

q

1− eqt
e

x
q
qt

=
1

qt

2qLik

(
1−e−qt

q

)
t (eqt + 1)

eyt
2 qteqt(

x
q )

eqt − 1
−

2qLik

(
1−e−qt

q

)
t (eqt + 1)

eyt
2 qteqt(

x
q
+1)

eqt − 1


=

1

q

{
∞∑
m=0

−H E (k)m,q(0, y)
tm

m!

∞∑
l=0

Bl

(
x

q

)
ql
tl

l!

+
∞∑
m=0

HE (k)m,q(0, y)
tm

m!

∞∑
l=0

Bl

(
x

q
+ 1

)
qltl

l!

}
.

By using Cauchy product and comparing the coefficients of tn

n!
, we have (14).

Theorem 2.5. The following relations hold true:

n HE (k)n−1,q(x, y) = 2
∞∑
s=0

∞∑
m=0

q−m

(m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)r+sHn (x+ qs− qr, y) . (15)

Proof. By (9),
∞∑
n=0

n HE (k)n−1,q(x, y)
tn

n!
=

2qext+yt
2

t (eqt + 1)

∞∑
m=0

1

(m+ 1)k
(1− e−qt)m+1

qm+1

= 2
∞∑
s=0

(−1)s eqtsext+yt2
∞∑
m=0

q−m

(m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)r e−qrt

= 2
∞∑
n=0

{
∞∑
s=0

∞∑
m=0

q−m

(m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)r+sHn (x+ qs− qr, y)

}
tn

n!
.

From here, we have (15).

Corollary 2.5.1. We have the following relation from (10) and (15):
∞∑
s=0

∞∑
m=0

q−m

(m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)r+sHn (x+ qs− qr, y)

+
n∑
v=0

(
n

v

)
qn−vv HE (k)n−1,q(x, y)

=
∞∑
m=0

q−m

(m+ 1)k

m+1∑
r=0

(
m+ 1

r

)
(−1)rHn (x− qr, y) .

Theorem 2.6. The following relationship between the Hermite-based poly-Euler polynomials
with a q-parameter and the Stirling numbers of the second kind holds:

n HE (k)n−1,q(x, y) +
n∑

m=0

(
n

m

)
qn−mm HE (k)m−1,q(x, y)

= 2
∞∑
m=0

m! (−1)m+1+n

(m+ 1)k

n∑
r=0

(
n

r

)
qr−mHn−r (x, y) (S2 (r,m, 1)− S2 (r,m)) . (16)
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Proof. By (7) and (9), we write as:
∞∑
n=0

n HE (k)n−1,q(x, y)
tn

n!
+ eqt

∞∑
n=0

n HE (k)n−1,q(x, y)
tn

n!

= 2qLik

(
1− e−qt

q

)
ext+yt

2

.

The left-hand side of this equation is

∞∑
n=0

{
n HE (k)n−1,q(x, y) +

n∑
m=0

(
n

m

)
qn−mm HE (k)m−1,q(x, y)

}
tn

n!
. (17)

The right-hand side of this equation

2q
∞∑
m=0

(−1)m+1

(m+ 1)k
(e−qt − 1)

m+1

qm+1

∞∑
n=0

Hn (x, y)
tn

n!

= 2q
∞∑
m=0

m!

qm+1

(−1)m+1

(m+ 1)k
(e−qt − 1)

m
e−qt

m!

∞∑
n=0

Hn (x, y)
tn

n!

−2q
∞∑
m=0

m!

qm+1

(−1)m+1

(m+ 1)k
(e−qt − 1)

m

m!

∞∑
n=0

Hn (x, y)
tn

n!

= 2q
∞∑
m=0

m! (−1)m+1

qm+1 (m+ 1)k

∞∑
r=0

S2 (r,m, 1)
(−qt)r

r!

∞∑
n=0

Hn (x, y)
tn

n!

−2q
∞∑
m=0

m! (−1)m+1

qm+1 (m+ 1)k

∞∑
r=0

S2 (r,m)
(−qt)r

r!

∞∑
n=0

Hn (x, y)
tn

n!
.

By using Cauchy product, we have

=
∞∑
n=0

{
2
∞∑
m=0

m! (−1)m+1+n

(m+ 1)k

n∑
r=0

(
n

r

)
qr−mHn−r (x, y) (S2 (r,m, 1)− S2 (r,m))

}
tn

n!
. (18)

From (17) and (18), we get (16).

Theorem 2.7. The following relation holds true:

HE (k)n+m,q(x, y) =
n∑
p=0

m∑
r=0

(
n

p

)(
m

r

)
(x− v)p+r HE (k)n+m−p−r,q(x, y). (19)

Proof. By (9),
∞∑
n=0

HE (k)n,q (x, y)
tn

n!
=

2qLik

(
1−e−qt

q

)
t (1 + eqt)

ext+yt
2

. (20)

We replace t by t+ u in (20)

∞∑
m=0

∞∑
n=0

HE (k)n+m,q(x, y)
tn

n!

um

m!
=

2qLik

(
1−e−q(t+u)

q

)
(t+ u) (1 + eq(t+u))

ex(t+u)+y(t+u)
2

.
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From this equation, we write as

∞∑
m=0

∞∑
n=0

HE (k)n+m,q(x, y)
tn

n!

um

m!
e−x(t+u) =

2qLik

(
1−e−q(t+u)

q

)
(t+ u) (1 + eq(t+u))

ey(t+u)
2

. (21)

In the last equation, we replace x by v, we get

∞∑
m=0

∞∑
n=0

HE (k)n+m,q(v, y)
tn

n!

um

m!
e−v(t+u) =

2qLik

(
1−e−q(t+u)

q

)
(t+ u) (1 + eq(t+u))

ey(t+u)
2

. (22)

By (21) and (22), we write
∞∑
m=0

∞∑
n=0

HE (k)n+m,q(x, y)
tn

n!

um

m!
= e(x−v)(t+u)

∞∑
m=0

∞∑
n=0

HE (k)n+m,q(v, y)
tn

n!

um

m!
. (23)

Now, by applying the following known series identity [22, p.52, Eq. 1.6(2)]
∞∑
N=0

f (N)
(x+ y)N

N !
=

∞∑
n,m=0

f (n+m)
xn

n!

ym

m!
(24)

in the right-hand side of (23), we get
∞∑
m=0

∞∑
n=0

HE (k)n+m,q(x, y)
tn

n!

um

m!
=
∞∑
p=0

∞∑
r=0

(x− v)p+r t
p

p!

ur

r!

∞∑
m=0

∞∑
n=0

HE (k)n+m,q(v, y)
tn

n!

um

m!
. (25)

Finally, upon first replacing n by n − p and m by m − r by using the Cauchy product in the
left-hand side of the above equation (25) and comparing the coefficients of tn

n!
and um

m!
on both

sides of the resulting equation, we have (19).

Theorem 2.8 (Closed Formula). The following relation holds true:

n HE (−k)n−1,q(x, y) = 2
∞∑
l=0

(−1)l
min(n,k)∑
m=0

(m!)2 Sq
−1

2 (k,m, 1)

{
S
(1,2)
2

(
n,m;

x

q
+ 1 + l,

y

q2

)
qn

−S(1,2)
2

(
n,m;

x

q
+ l,

y

q2

)
qn
}

. (26)

Proof. By replacing k by (−k) in (9). We get

∞∑
n=0

n HE (−k)n−1,q(x, y)
tn

n!
=

2qLi−k

(
1−e−qt

q

)
(1 + eqt)

ext+yt
2

∞∑
k=0

∞∑
n=0

n HE (−k)n−1,q(x, y)
tn

n!

uk

k!
=

2q

eqt + 1

∞∑
m=0

(
1− e−qt

q

)m+1

(m+ 1)k ext+yt
2 uk

k!

=
2q

eqt + 1
ext+yt

2

(
1− e−qt

q

)
eu

∞∑
m=0

((
1− e−qt

q

)
eu
)m

=
2ext+yt

2

eqt + 1

(
1− e−qt

)
eu

eqt

1− (eqt − 1) (q−1eu − 1)

= 2
∞∑
l=0

(−1)l eqlt
(
eqt − 1

) ∞∑
m=0

(
eqt − 1

)m
eu
(
q−1eu − 1

)m
ext+yt

2
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= 2
∞∑
l=0

(−1)l
{
∞∑
m=0

e(x+q+ql)t+yt
2 (
eqt − 1

)m
eu
(
q−1eu − 1

)m
−

∞∑
m=0

e(x+ql)t+yt
2 (
eqt − 1

)m
eu
(
q−1eu − 1

)m} . (27)

For λ = 1 and j = 2 in (8), we get

∞∑
n=0

S
(1,2)
2 (n,m;x, y)

tn

n!
=

(et − 1)
m

m!
ext+yt

2

. (28)

We put the equation (8) and (28) in (27). We have

= 2
∞∑
l=0

(−1)l
{
∞∑
m=0

[
m!

∞∑
n=0

S
(1,2)
2

(
n,m;

x

q
+ 1 + l,

y

q2

)
qn
tn

n!

][
m!

∞∑
k=0

Sq
−1

2 (k,m1)
uk

k!

]

−
∞∑
m=0

[
m!

∞∑
n=0

S
(1,2)
2

(
n,m;

x

q
+ l,

y

q2

)
qn
tn

n!

][
m!

∞∑
k=0

Sq
−1

2 (k,m1)
uk

k!

]}
.

From the last equation, comparing the coefficients of tn

n!
and uk

k!
, we have (26).
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