József Sándor and Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 2, Pages 34–46
DOI: 10.7546/nntdm.2020.26.2.34-46
Full paper (PDF, 214 Kb)
Details
Authors and affiliations
József Sándor
Babeş-Bolyai University
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania
Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling, IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory, Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
Abstract
Restrictive factor and extension factor are two arithmetic functions, introduced by the authors. In the paper, some of their extensions are introduced and some of the basic properties of the newly defined functions are studied.
Keywords
- Arithmetic function
- Extension factor
- Restrictive factor
2010 Mathematics Subject Classification
- 11A25
References
- Atanassov, K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (4), 117–119.
- Atanassov, K. & Sándor J. (2019). Extension factor: Definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25 (3), 36–43.
- Cîırtoaje, V. (2005). Two generalizations of Popoviciu’s inequality. Crux Mathematicorum, 31 (5), 313–318.
- Hardy, G. H., Littlewood J. E., & Pólya, G. (1952). Inequalities (2nd Ed.), Cambridge University Press.
- Sándor, J., & Atanassov, K. (2019). Inequalities between the arithmetic functions φ, ψ and σ. Part 2. Notes on Number Theory and Discrete Mathematics, 25 (2), 30–35.
- Sándor, J., Mitrinović, D. & Crstici, B. (2005). Handbook of Number Theory, Vol. I, Springer.
Related papers
Cite this paper
Sándor, J., & Atanassov, K. T. (2020). Restrictive factor and extension factor. Notes on Number Theory and Discrete Mathematics, 26 (2), 34-46, DOI: 10.7546/nntdm.2020.26.2.34-46.