Krassimir T. Atanassov and József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 25, 2019, Number 3, Pages 36-43

DOI: 10.7546/nntdm.2019.25.3.36-43

**Download full paper: PDF, 166 Kb**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences,
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria*

*Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria*

József Sándor

*Babes-Bolyai University of Cluj, Romania
*

### Abstract

A new arithmetic function, called “Extension Factor” is introduced and some of its properties are studied.

### Keywords

- Arithmetic function
- Extension factor

### 2010 Mathematics Subject Classification

- 11A25

### References

- Atanassov, K. (1987). New integer functions, related to
*ϕ*and*σ*functions, Bulletin of Number Theory and Related Topics, XI (1), 3-26. - Atanassov, K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8 (4), 117-119.
- Atanassov, K. (2016) On function “Restrictive factor”, Notes on Number Theory and Discrete Mathematics, 22 (2), 17-22.
- Mitrinovic, D. S. & Sándor, J., & Crstici, B. (1995). Handbook of number theory, Kluwer Acad. Publ.
- Sándor, J. (1989). On some Diophantine equations for particular arithmetic functions, Seminarul de Teoria Structurilor, Univ. Timisoara, Romania, 53, 1-10.
- Sándor, J. (2010). Two arithmetic inequalities, Advanced Studies in Contemporary Mathematics, 20 (2), 197-202.
- Sándor, J. et al., Handbook of number theory I, Springer Verlag, 2005 (First printing 1995 by Kluwer Acad. Publ.).

## Related papers

- Atanassov, K. T. & Sándor, J. (2020). Extension factor: Definition, properties and problems. Part 2. Notes on Number Theory and Discrete Mathematics, 26(1), 31-39.

## Cite this paper

APAAtanassov, K. & Sándor, J. (2019). Extension factor: Definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25(3), 36-43, doi: 10.7546/nntdm.2019.25.3.36-43.

ChicagoAtanassov, Krassimir and József Sándor. (2019). “Extension Factor: Definition, Properties and Problems. Part 1.” Notes on Number Theory and Discrete Mathematics. Notes on Number Theory and Discrete Mathematics 25, no. 3 (2019): 36-43, doi: 10.7546/nntdm.2019.25.3.36-43.

MLAAtanassov, Krassimir and József Sándor. (2019). “Extension Factor: Definition, Properties and Problems. Part 1.” Notes on Number Theory and Discrete Mathematics 25.3 (2019): 36-43. Print, doi: 10.7546/nntdm.2019.25.3.36-43.