Krassimir T. Atanassov

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 2, Pages 17—22

**Download full paper: PDF, 172 Kb**

## Details

### Authors and affiliations

Krassimir T. Atanassov

* Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria*

*Intelligent Systems Laboratory
Prof. Asen Zlatarov University
Prof. Yakimov Blvd., Bourgas–8000, Bulgaria
*

### Abstract

Some new properties of the arithmetic function called “Restrictive factor” are formulated and studied.

### Keywords

- Arithmetic function
- Restrictive factor

### AMS Classification

- 11A25

### References

- Atanassov, K. (2002) Restrictive factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
- Panaitopol, L. (2004) Properties of the Atanassov functions. Advanced Studies on Contemporary Mathematics, 8(1), 55–59.
- Sandor, J., & Mitrinovic, D. S. (1995) Handbook of number theory, Kluwer Acad. Publ.
- Spiegelhalter, P., & Zaharescu, A. (2011) Strong and weak Atanassov pairs, Proceedings of the Jangjeon Mathematical Society,14(3), 355–361.

## Related papers

Atanassov, K. & Sándor, J. (2019). Extension factor: definition, properties and problems. Part 1. Notes on Number Theory and Discrete Mathematics, 25(3), 36-43, doi: 10.7546/nntdm.2019.25.3.36-43.

## Cite this paper

APAAtanassov, K. T. (2016). On function “Restrictive factor”. Notes on Number Theory and Discrete Mathematics, 22(2), 17-22.

ChicagoAtanassov, Krassimir T. “On Function “Restrictive factor”.” Notes on Number Theory and Discrete Mathematics 22, no. 2 (2016): 17-22.

MLAAtanassov, Krassimir T. “On Function “Restrictive factor”.” Notes on Number Theory and Discrete Mathematics 22.2 (2016): 17-22. Print.