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1 Introduction

In a series of papers, published over the last 35 years, the authors introduced some new arithmetic
functions. Two of them were called “Restrictive Factor” [1] and “Extension Factor” [2]. For each

natural number n =
k∏
i=1

pαi
i , where k, α1, α2, . . . , αk ≥ 1 are natural numbers and p1, p2, . . . , pk

are different prime numbers, these factors are defined, respectively, by:

RF (n) =
k∏
i=1

pαi−1
i ,

RF (1) = 1
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and

EF (n) =
k∏
i=1

pαi+1
i ,

EF (1) = 1.

In the present paper, for each natural number n, of the above form we will introduce new
arithmetic functions, related to the above mentioned ones.

2 First round of generalizations

Let

n =
k∏
i=1

pαi
i ,

with k, α1, α2, . . . , αk ≥ 1, is the prime factorization of n > 1. Define

EFs(n) =
r∏
i=1

psαi+1
i

and

RFs(n) =
r∏
i=1

psαi−1
i ,

where s ∈ R, andR is the set of real numbers.
Then, clearly

EF1(n) = EF (n),

RF1(n) = RF (n)

and
EFs(n).RFs(n) = n2s. (1)

So, using the inequality x+ y ≥ 2
√
xy, from (1) we get

EFs(n) +RFs(n) ≥ 2ns. (2)

We have
EFs(n) = ns.mult(n),

RFs(n) =
ns

mult(n)
.

(3)

We get
EFs(n) ≥ EF (n),

RFs(n) ≥ RF (n),
(4)

where s ≥ 1 and
EFs(n) ≤ EF (n),

RFs(n) ≤ RF (n),
(5)

for 0 < s ≤ 1
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Similarly, as
ns

mult(n)
≥
[

n

mult(n)

]s
for s ≥ 1, we get by (3) that

EFs(n) ≥ (EF (n))s,

RFs(n) ≥ (RF (n))s,
(6)

for s ≥ 1. For 0 < s ≤ 1, the reverse inequalities hold true. Now, we prove

Theorem 1. Let Js denote the Jordan totient function. Then we have for n > 1:

RFs(n) ≤ (mult(n))s−1(ns − Js(n)), (7)

for s > 0.

Proof. We have

Js(n) = ns
s∏
i=1

(
1− 1

psi

)
.

Now, first we prove that
s∏
i=1

(
1− 1

psi

)
≤ 1− 1

s∏
i=1

psi

(8)

or equivalently,
s∏
i=1

(psi − 1) ≤
s∏
i=1

psi − 1.

Put psi − 1 = xi for i = 1, 2, . . . , r. Then we have to prove that

s∏
i=1

xi ≤
s∏
i=1

(xi + 1)− 1,

or
s∏
i=1

(xi + 1) ≥
s∏
i=1

xi + 1.

This holds true, as xi > 0 by pi ≥ 2s > 1 for s > 0. For r = 1, we have equality. Now, by (8) we
can write

Js(n) ≤ nk − ns

mult(n)
.

1

(mult(n))s−1
= ns −RFs(n).

1

(mult(n))s−1

and equality (7) follows.
Obviously, for s = 1 we get from (7):

RF (n) ≤ n− ϕ(n) (9)

for n > 1.
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Theorem 2. For s ≥ 1 we have
EFs(n) > σs(n) (10)

for n > 1. When n ≥ 3 is odd, then

EFs(n) > σs(n) + ns, (11)

where σs(n) denotes the sum of s-th powers of the divisors of n.

Proof. As

σs(n) =
r∏
i=1

p
s(αi+1)
i − 1

ps1 − 1
,

for the proof of (10) it will be sufficient to show that

psa+1 >
ps(a+1) − 1

ps − 1
. (12)

Now, (12) is equivalent to psa+s+1 − psa+1 − psa+s > −1 that is valid, because

ps − ps−1 = ps−1(p− 1) ≥ p− 1 ≥ 1

by s ≥ 1.
For the proof of (11) we will use the following well-known inequality (see, e.g., [6]) for s ≥ 1:

σs(n).Js(n) < n2s.

Thus, we get

σs(n) <
n2s

Js(n)
< ns.(mult(n))s − ns.

The right inequality is equivalent to

ns

Js(n)
< (mult(n))s − ns. (13)

The inequality (13) can be written also as

x1 . . . xr
(x1 − 1) . . . (xr − 1)

< x1 . . . xr − 1, (14)

where xi = psi for i = 1, . . . , r. When n is odd and s ≥ 1, then x1, . . . , xr ≥ 3, and the inequality
(14) is proved in [2]. Thus, we get the inequality

σs(n) + ns < (EF (n))s,

which is even stronger than (11), by the second relation of (6).

Now, we shall use the following lemma (see [4, 5]).

Lemma 1. If a1, . . . , ar > 0, α1, . . . , αr > 0 and α1 + · · ·+ αr = 1, then

1
α1

a1
+ · · ·+ αr

ar

≤ aα1
1 . . . aαr

r ≤ α1a1 + · · ·+ αrar. (15)
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We will mention that this is the classical Weighted Harmonic Mean – Geometric Mean –
Arithmetic Mean inequality.

Let ω(n) = r (the number of distinct prime factors of n > 1), Ω(n) = a1 + · · · + ar (the
number of prime factors of n), β(n) = p1 + · · ·+ pr;B(n) = a1p1 + · · ·+ arpr (see [6]).

Theorem 3. For n > 1 we have

EFs(n) ≤
(
s.B(n) + β(n)

k

)k
, (16)

where k = sΩ(n) + ω(n) and s > 0 and

RFs(n) ≤
(
s.B(n)− β(n)

m

)m
, (17)

where m = sΩ(n)− ω(n) and s ≥ 1.

Proof. Apply the right-hand side of inequality (15) to a1 = p1, . . . , ar = pr and α1 =
sa1 + 1

k
, . . . ,

αr =
sar + 1

k
. Then, clearly,

α1 + · · ·+ αr =
s(a1 + · · ·+ ar) + r

k
=
sΩ(n) + ω(n)

k
= 1.

After elementary computations, we get (16).
In the same manner, apply the right-hand side of (15) to a1 = p1, . . . , ar = pr and α1 =

sa1 − 1

m
, . . . , αr =

sar − 1

m
. Then

α1 + · · ·+ αr =
s(a1 + · · ·+ ar) + r

m
=
sΩ(n)− ω(n)

m

and from α1, . . . , αr > 0 by s.ai − 1 ≥ ai − 1 ≥ 1 > 0; inequality (17) follows, as well.

In that follows, we will introduce the following new arithmetic functions: let

β∗(n) =
1

p1

+ · · ·+ 1

pr

and
B∗(n) =

a1

p1

+ · · ·+ ar
pr
.

Theorem 4. For n > 1 we have

EFs(n) ≥
(

k

sB∗(n) + β∗(n)

)k
(18)

for s > 0; and

RFs(n) ≥
(

k

sB∗(n)− β∗(n)

)k
(19)

for s ≥ 1, where k = sΩ(n) + ω(n) for s > 0 and m = sΩ(n)− ω(n) for s ≥ 1.
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Proof. Use the left-hand side of inequality (15) to a1 = p1, . . . , ar = pr and α1 =
sa1 + 1

k
, . . . ,

αr =
sar + 1

k
and use the new arithmetic functions β∗ and B∗. So, inequality (18) follows.

Inequality (19) follows in the same manner.

From (15), by letting α1 = · · · = αr =
1

r
, we get

(a1 + · · ·+ ar).

(
1

a1

+ · · ·+ 1

ar

)
≥ r2 (20)

so we get the relation
β(n).β∗(n) ≥ (ω(n))2. (21)

We shall prove the similar inequality

B(n).B∗(n) ≥ (Ω(n))2. (22)

For this purpose, apply the classical Cauchy–Bunyakowski inequality (see [4])(
r∑
i=1

xiyi

)2

≤

(
r∑
i=1

x2
i

)
.

(
r∑
i=1

y2
i

)

to xi =
√
aipi, yi =

√
ai
pi
. As xiyi = ai, by the given definitions, inequality (22) follows. By

x+ y ≥ 2
√
xy, clearly from (21) and (22), we get:

β(n) + β∗(n) ≥ 2ω(n),

B(n) +B∗(n) ≥ 2Ω(n).
(23)

Functions β∗ and B∗ will be studied in detail in another paper.

3 Second round of generalizations

A second generalization of EF and RF will be given by

EF (s)(n) =
r∏
i=1

pai+si

and

RF (s)(n) =
r∏
i=1

pai−si ,

where s ∈ R. Then clearly EF (1)(n) = EF (n) and RF (1)(n) = RF (n).
Now,

EF (s)(n).RF (s)(n) = n2. (24)

Thus, we have the inequality similar to (2):

EF (s)(n) +RF (s)(n) = 2n. (25)
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We have
EF (s)(n) = n(mult(n))s,

RF (s)(n) =
n

(mult(n))s
.

(26)

From (26) and (3) it is clear that

EFs(n) ≥ EF (s)(n) (27)

for s ≥ 1 with an equality only when s = 1, and

RFs(n) ≥ RF (s)(n) (28)

for s ≥ 1 with an equality only when s = 1.
For 0 < s ≤ 1, the inequalities in (27) and (28) are reversed.
By (26), we get that

RF (s)(n) ≤ RF (n) ≤ n− ϕ(n). (29)

Now, we shall introduce an extension of the well-known arithmetic function function σ.
Put

σ(s)(n) =
r∏
i=1

pai+si − 1

pi − 1
(30)

for n > 1. Clearly, we have σ(1)(n) = σ(n).
As s(ai + 1) ≥ ai + s for s ≥ 1, we get that

σs(n) ≥ σ(s)(n), (31)

where σs(n) is the sum of the s-th powers of the divisors of n.

Theorem 5. For s ≥ 1 we have for n > 1:

n < σ(s)(n) < EF (s)(n). (32)

Proof. The following double inequality can be directly proved:

pa <
pa+s − 1

p− 1
< pa+s, (33)

where a ≥ 1, s ≥ 1. Then (32) follows from the definitions.

Theorem 6. For s ≥ 1 we have:

(mult(n))s−1

ζ(s+ 1)
<
ϕ(n).σ(s)(n)

n2
< (mult(n))s−1, (34)

where ζ is the Riemann zeta function.
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Proof. By (30) we have

σ(s)(n) =
r∏
i=1

pai+si .
(

1− 1

p
ai+s
i

)
pi − 1

<
r∏
i=1

pai+si

pi − 1
= n.

r∏
i=1

psi
pi − 1

= n.
r∏
i=1

ps−1
i .

r∏
i=1

pi
pi − 1

=
n2

ϕ(n)
.

r∏
i=1

ps−1
i =

n2

ϕ(n)
.mult(n)s−1,

so the right-hand side of (34) follows.
For the left-hand side of the inequality, let us remark that

ϕ(n)σ(s)(n)

n2
=

r∏
i=1

pai+si − 1

pai+1
i

=
r∏
i=1

ps−1
i .

r∏
i=1

(
1− 1

pai+si

)
= mult(n)s−1.

r∏
i=1

(
1− 1

pai+si

)
.

Now, by Euler’s formula we see that

r∏
i=1

(
1− 1

pai+si

)
≥

r∏
i=1

(
1− 1

ps+1
i

)
>
∏
p prime

(
1− 1

ps+1
i

)
=

1

ζ(s+ 1)
.

Thus, the left-hand side of (34) follows, too.

For s = 1 and n > 1, we get the classical inequalities (see [6]):

6

π2
<
ϕ(n)σ(n)

n2
< 1. (35)

Corollary. For s ≥ 1 we have

EF s−1(n)

ζ(s+ 1)
<
ϕ(n)σ(s)(n)

n
< EF (s−1)(n). (36)

Using now Lemma 1, we can obtain results similar to those stated in Theorems 3 and 4:

Theorem 7. For n > 1 we have

EF (s)(n) ≤
(
B(n) + sβ(n)

Ω(n) + sω(n)

)Ω(n)+sω(n)

, (37)

EF (s)(n) ≥
(

Ω(n) + sω(n)

B(n) + sβ(n)

)Ω(n)+sω(n)

, (38)

RF (s)(n) ≤
(
B(n)− sβ(n)

Ω(n)− sω(n)

)Ω(n)−sω(n)

, (39)

EF (s)(n) ≥
(

Ω(n)− sω(n)

B(n)− sβ(n)

)Ω(n)−sω(n)

. (40)
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Proof. For the proof of (37), apply the right-hand side of inequality (15) to a1 = p1, . . . , ar = pr
and α1 =

a1 + s

t
, . . . , αr =

ar + s

t
, where t = Ω(n) + sω(n). Then,

α1 + · · ·+ αr =
Ω(n) + sω(n)

t
= 1.

So, after elementary computations, we get (37). For the inequality (38), apply the left-hand side
of inequality (15), and use the new arithmetic functions β∗ and B∗ (see the proof of Theorem 4).

Inequalities (39) and (40) can be proved in the same manner, and we omit the details.

We now state an auxiliary result, which is essentially due to Minkowski [4]:

Lemma 2. Let A,B ≥ 0. Then we have:(
r∏
i=1

(Ai +Bi)

) 1
r

≥

(
r∏
i=1

Ai

) 1
r

+

(
r∏
i=1

Bi

) 1
r

. (41)

If Ai ≥ Bi (i = 1, . . . , r), then(
r∏
i=1

(Ai −Bi)

) 1
r

≤

(
r∏
i=1

Ai

) 1
r

−

(
r∏
i=1

Bi

) 1
r

. (42)

Proof. (41) is well-known. For the proof of (42), for each i (i = 1, . . . , r) put: Ai := Ai − Bi

and Bi := Bi instead of Ai and Bi in (41). Then we get from (41) the inequality (42).

Theorem 8. From any s ∈ R we have(
EF (s)(n)

) 1
ω(n) +

(
EF (s−1)(n)

) 1
ω(n) ≤ ((mult(n))s.ψ(n))

1
ω(n) , (43)

(
EF (s)(n)

) 1
ω(n) −

(
EF (s−1)(n)

) 1
ω(n) ≥ ((mult(n))s.ϕ(n))

1
ω(n) , (44)

where ψ denotes Dedekind’s arithmetic function and ϕ denotes Euler’s totient function.

Proof. Let Ai = pai+si , Bi = pai+s−1
i in (41). Then

Ai +Bi = pai+s−1
i (pi + 1) = psi .p

ai−1
i (pi + 1).

As ψ(n) =
r∏
i=1

pai−1
i (pi + 1), by definitions, we get the desired inequality (43). Inequality (44)

can be deduced in the same manner from (42).

Theorem 9. From any s ∈ R we have(
EF(s−1)(n).ψ(n)

) 1
ω(n) ≥

(
EF(s)(n)

) 1
ω(n) + n

s
ω(n) , (45)(

EF(s−1)(n).ϕ(n)
) 1

ω(n) ≥
(
EF(s)(n)

) 1
ω(n) + n

s
ω(n) , (46)

for n > 1.
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Proof. Apply (41) to Ai = psai+1
i , Bi = psaii . Now,

Ai +Bi = psaii .(pi + 1) = pai−1
i .(pi + 1).p

ai(s−1)+1
i .

So, by the given definition, inequality (45) follows from (41). The similar proof applies to
(46), and we omit the details.

We can mention that when Ai > 0, Bi > 0 hold true for any s ∈ R and inequality Ai ≥ Bi is
equivalent to pi ≥ 1, so, we can assume again that s can take any real natural value.

Theorem 10. For s > −1 we have

(
EF (s)(n)

) 1
ω(n) ≥

(
r∏
i=1

(pi − 1)

) 1
ω(n)

. (σs(n))
1

ω(n) + 1. (47)

Proof. Apply inequality (42) of Lemma 2 to Ai =
pai+s
i

pi − 1
and Bi =

1

pi − 1
. Then

r∏
i=1

(Ai −Bi) = σ(s)(n),

r∏
i=1

Ai =
ES(s)(n)
r∏
i=1

(pi − 1)
,

r∏
i=1

Bi =
1

r∏
i=1

(p1 − 1)
,

and after elementary transformations, we get inequality (47).

We will mention that it is immediate that
r∏
i=1

(pi − 1) =
mult(n).ϕ(n)

n
, (48)

so (47) can be written also in terms of the arithmetic functions mult and ϕ.

4 Additive analogues

As β(n) is an additive analogue of mult(n) and B(n) – of the identity function n, respectively,
one can introduce the additive analogues of the functions EF and RF . More generally, let us
denote

RF
(s)
+ (n) =

r∑
i=1

pai−si ,

EF
(s)
+ (n) =

r∑
i=1

pai+si ,

(49)
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and similarly,

RF+,s(n) =
r∑
i=1

psai−1
i ,

EF+,s(n) =
r∑
i=1

psai+1
i .

(50)

They are generalizations of the additive functions:

RF+(n) =
r∑
i=1

pai−1
i ,

EF+(n) =
r∑
i=1

pai+1
i .

(51)

Here, the respective conditions for the s-argument of RFs(n) and RF (s)
+ are valid, as above.

We will study first the arithmetic functions (51), as these have not been studied in the
literature up to now. First, we prove the following theorem.

Theorem 11. For n > 1,

RF+(n) ≥ ω(n)(RF (n))
1

ω(n) , (52)

EF+(n) ≥ ω(n)(EF (n))
1

ω(n) , (53)(
B1(n)−RF+(n)

ω(n)

)
≥ ϕ(n), (54)(

B1(n) +RF+(n)

ω(n)

)
≥ ψ(n), (55)(

EF+(n)−RF+(n)

ω(n)

)
≥ ϕ(n)ψ(n)

RF (n)
. (56)

Proof. Inequality (52) follows by applying the arithmetic-geometric mean inequality

r∑
i=1

xi ≥ r

 r

√√√√ r∏
i=1

xi

 , (57)

for xi = pai−1
i (i = 1, . . . , r), r = ω(n). For (53) put xi = pai+1

i ; for (54) remark that

pa − pa−1 = pa−1(p − 1) and
r∏
i=1

(paii − pai−1
i ) = ϕ(n). Let xi = paii − pai−1

i in (57). As
r∑
i=1

paii = B(n) and
r∑
i=1

pai−1
i = RF+(n), (54) follows.

Apply (57) for xi = paii + pai−1
i to deduce (55).

Finally, as pai+1
i − pai−1

i = pai−1
i (pi − 1)(pi + 1), we get

r∏
i=1

(pai+1
i − pai−1

i ) =
ϕ(n)ψ(n)

RF (n

and (56) follows by applying (57) to xi = pai+1
i − pai−1

i .
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Theorem 12. For n > 1 we have

(B1(n))2 ≤ RF+(n).EF+(n), (58)

(RF+(n))2 ≤ ω(n).(RF (n))
2

ω(n) + (ω(n)− 1).RF+

(
m

mult(n)

)
, (59)

(EF+(n))2 ≤ ω(n).(EF (n))
2

ω(n) + (ω(n)− 1).EF+

(
m

mult(n)

)
. (60)

Proof. For the proof of (58) apply the classical Cauchy–Bunyakovski–Schwarz inequality (see

[4]) for xi =
√
pai−1
i , yi =

√
pai+1
i . Then, the inequality (58) follows.

For the proof of (59) and (60), we will use the following inequality due to T. Popoviciu and
V. Cı̂rtoaje (see [3]).

If I ⊆ R is an interval and f : I → R is a convex function, and a1, . . . , ar ∈ I for r > 2,
then

r∑
i=1

f(ai) +
r

r − 2
.f


r∑
i=1

ai

r

 ≥ 2

r − 2
.
∑

1≤i<j≤r

f

(
ai + aj

2

)
. (61)

Put f(x) = ex in(61) and then, let ai = 2 log xi for xi > 0. As

∑
1≤i<j≤r

xixj =
1

r − 2

( r∑
i=1

xi

)2

−
r∑
i=1

x2
i

 ,

after some transformations, we get from (61):

(r − 1)
r∑
i=1

x2
i + r

1
r

√√√√ r∏
i=1

x2
i ≥

(
r∑
i=1

xi

)2

. (62)

Now, apply first the inequality (62) for xi = pai−1
i . As

n2

mult(n)
=

r∏
i=1

p2ai−1
i , we get that

r∑
i=1

x2
i =

r∑
i=1

pai−1
i = RF+

(
n2

mult(n)

)
,

and (59) follows. In the same manner, apply (62) to xi = pai+1
i . As

EF+

(
n2

mult(n)

)
=

r∑
i=1

p2ai+2
i ,

inequality (60) follows.
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5 Conclusion

In Section 3 we introduced an extension of the sum-of-divisor function σ(s)

σ(s)(n) =
r∏
i=1

pai+si − 1

pi − 1
.

We note that a similar extension can be introduced, namely

σ(s)(n) =
r∏
i=1

psai+1
i − 1

pi − 1
.

Both functions are new – and distinct – from the classical function

σs(n) =
r∏
i=1

p
s(ai+1)
i − 1

pi − 1
.

The properties of the new σ-functions, and their connections with other arithmetic functions
can be studied, and these will be the object of future research.

Theorems 11 and 12 may be extended to the general functions RF (s)
+ , RF+,s(n), etc.
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