Real-rooted polynomials via generalized Bell umbra

Abdelkader Benyattou and Miloud Mihoubi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 2, Pages 136-144
DOI: 10.7546/nntdm.2019.25.2.136-144
Full paper (PDF, 196 Kb)

Details

Authors and affiliations

Abdelkader Benyattou
Faculty of Mathematics, USTHB, RECITS Laboratory
P. O. 32 Box 32, El Alia 16111, Algiers, Algeria

Miloud Mihoubi
Faculty of Mathematics, USTHB, RECITS Laboratory
P. O. 32 Box 32, El Alia 16111, Algiers, Algeria

Abstract

In this paper, by the generalized Bell umbra and Rolle’s theorem, we give some results on the real rootedness of polynomials. Some applications on partition polynomials are considered. Our results are illustrated by some comprehensive examples.

Keywords

  • Polynomials with real zeros
  • Generalized Bell umbra
  • Partition polynomials

2010 Mathematics Subject Classification

  • 11B73
  • 30C15

References

  1. Ahuja, J. C. & Enneking, E. A. (1979). Concavity property and a recurrence relation for associated Lah numbers, The Fibonacci Quarterly, 17, 158–161.
  2. Bell, E. T. (1934). Exponential polynomials, Ann. Math., 35, 258–277.
  3. Bender, E. A. & Canfield, E. R. (1996). Log-concavity and related properties of the cycle index polynomials, J. Combin. Theory Ser. A, 74, 57–70.
  4. Benyattou, A. & Mihoubi, M. (2018). Curious congruences related to the Bell polynomials, Quaest. Math., 41 (3), 437–448.
  5. Bóna, M., & Mez˝ o, I. (2016). Real zeros and partitions without singleton blocks, European J. Combin., 51, 500–510.
  6. Brenti, F. (1994). Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math., 178, 71–89.
  7. Comtet, L. (1974). Advanced Combinatorics, D. Reidel Publishing Company, Dordrecht-Holland, Boston-USA, 133–175.
  8. Dong, F. M., Koh, K. M. & Teo, K. L. (2005). Chromatic polynomials and chromaticity of graphs, World Scientific, British library.
  9. Gertsch, A. & Robert, A. M. (1996). Some congruences concerning the Bell numbers, Bull. Belg. Math. Soc. Simon Stevin, 3, 467–475.
  10. Gessel, I.M. (2003). Applications of the classical umbral calculus, Algebra Universalis, 49, 397–434.
  11. Mező, I. (2008). On the maximum of r-Stirling numbers, Adv. Appl. Math., 41, 293–306.
  12. Maamra, M. S. & Mihoubi, M. (2014). The (r1,…,rp)-Bell polynomials, Integers, 14, Article A34.
  13. Mihoubi, M. (2008). Bell polynomials and binomial type sequences, Discrete Math., 308, 2450–2459.
  14. Mihoubi, M. (2013). The role of binomial type sequences in determination identities for Bell polynomials, Ars Combin., 111, 323–337.
  15. Mihoubi, M. &Maamra, M.S. (2012).The (r1,…,rp)-Stirling numbers ofthe second kind, Integers, 12, Article A35.
  16. Mihoubi, M. & Rahmani, M. (2017). The partial r-Bell polynomials, Afr. Mat., 28 (7–8), 1167–1183.
  17. Shattuck, M. (2017). Some combinatorial formulas for the partial r-Bell polynomials, Notes Number Th. Discr. Math., 23 (1), 63–76.
  18. Stanley, R. P. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci., 576, 500–534.
  19. Sun, Y. , Wu, X. & Zhuang, J. (2013). Congruences on the Bell polynomials and the derangement polynomials, J. Num. Theory, 133, 1564–1571.
  20. Tebtoub, A.F. (2017). Aspects combinatoires liés à la monotonie des suites classiques, Doctorat thesis, USTHB, 2017.

Related papers

Cite this paper

Benyattou, A. & Mihoubi, M. (2019). Real-rooted polynomials via generalized Bell umbra. Notes on Number Theory and Discrete Mathematics, 25(2), 136-144, DOI: 10.7546/nntdm.2019.25.2.136-144.

Comments are closed.