Alessandro Bagatini, Marília Luiza Matte and Adriana Wagner
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 54–74
DOI: 10.7546/nntdm.2019.25.1.54-74
Full paper (PDF, 252 Kb)
Details
Authors and affiliations
Alessandro Bagatini
IME, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500 – 90509-900, Porto Alegre-RS, Brazil
Present address: Instituto Federal Catarinense–IFC
88960-000, Sombrio-SC, Brazil
Marília Luiza Matte
IME, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves, 9500 – 90509-900, Porto Alegre-RS, Brazil
Present address: Colégio Militar de Porto Alegre–CMPA
90040-130, Porto Alegre-RS, Brazil
Adriana Wagner
IMECC–Universidade Estadual de Campinas
Rua Sérgio Buarque de Holanda, 651 – 13083-859, Campinas-SP, Brazil
Present address: Campus de Aquidauana–UFMS
79200-000, Aquidauana-MS, Brazil
Abstract
From two-line matrix interpretations of Mock Theta Functions ρ(q), σ(q) and ν(q) introduced in [5], we have obtained identities for the partitions generated by their respective general terms, whose proofs are done in a completely combinatorial way. We have also obtained relations between partitions into two colours generated by ρ(q) and σ(q), and also by ν(q).
Keywords
- Mock Theta Function
- Integer partition
- Combinatorial interpretation
- Partition enumeration
2010 Mathematics Subject Classification
- 11P81
- 05A19
References
- Andrade, C. P., da Silva, R., Santos, J. P. O., Silva, K. C. P., & Spreafico, E. V. P. Some consequences of the two-line matrix representations for partitions. Preprint.
- Andrews, G. E. (1998). The Theory of Partitions, Cambridge University Press.
- Bagatini, A., Matte, M. L., & Wagner, A. (2017). Identities for partitions generated by the unsigned versions of some mock theta functions. Bulletin of the Brazilian Mathematical Society, New Series, Springer, 48 (3), 413–437.
- Brietzke, E. H. M., Santos, J. P. O., & da Silva, R. (2010). Bijective proofs using two-line matrix representations for partitions, The Ramanujan Journal, Springer, 23 (1–3), 265–295.
- Brietzke, E. H. M., Santos, J. P. O., & da Silva, R. (2013). Combinatorial interpretations as two-line array for the mock theta functions, Bulletin of the Brazilian Mathematical Society, New Series, Springer, 44 (2), 233–253.
- Santos, J. P. O., Mondek, P., & Ribeiro, A. C. (2011). New two-line arrays representing partitions, Annals of Combinatorics, Springer, 15 (2), 341–354.
- Wagner, A., Bagatini, A., & Matte, M. (2017). On new results about partitions into parts congruent to ±1 (mod 5), Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 5 (1), Article 0226, 7 pages, DOI: 10.5540/03.2017.005.01. 0226.
Related papers
Cite this paper
Bagatini, A., Matte, M. L., & Wagner, A. (2019). Partitions generated by Mock Theta Functions ρ(q), σ(q) and ν(q) and relations with partitions into distinct parts. Notes on Number Theory and Discrete Mathematics, 25(1), 54-74, DOI: 10.7546/nntdm.2019.25.1.54-74.