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1 Introduction

A new combinatorial way to represent integer partitions as two-line matrices was introduced
in [6]. The same idea was extended in [4] to specific types of partitions, allowing the authors to
prove a great amount of new results. In a similar way, Brietzke et al. in [5] presented two-line
matrix representations for the coefficients of some Mock Theta Functions. Without considering
the signal when it appears, the general terms of these functions can be interpreted as generating
functions for specific types of integer partitions.

Matrix representations for partitions have been useful to express other kinds of partitions. By
considering the First Roger-Ramanujan’s Identity, for example, partitions into 2-distinct parts are
also represented as two-line matrices in [6]. Concerning the other side of the identity, partitions
into parts congruent to ±1 (mod 5) have their two-line matrix representation given in [7], where
nice information was derived.

Considering the models given in [5], a study of Mock Theta Functions φ(q), ψ(q), f0(q),
F0(q), f1(q) and F1(q) as Generating Functions for partitions into one colour was done in [3]. In
a similar way, the present work focus on Mock Theta Functions ρ(q), σ(q), ν(q) and λ(q), the
first two and the last one related to partitions into two colours. Although it is not apparent, we can
associate some partitions generated by ν(q), which consider only one colour, to a specific type
of partitions into two colours brought forth by λ(q). As a consequence, we prove an identity for
ν(q) in a combinatorial way.

The second line of matrices representing partitions generated by those Mock Theta Functions
also describes properties of the related partition. By summing the elements of the second line, we
can classify the partitions according to these sums and organize the data in a table, as done in [1]
for two matrix representations of unrestricted partitions. It allows us to investigate and discover
properties, unknown until then, that are suggested by the table.

2 Mock Theta Function ρ(q)

In this section, we study the Mock Theta Function of order 6

ρ(q) =
∞∑
n=0

(−q; q)nq(
n+1
2 )

(q; q2)n+1

, (1)

and obtain results and patterns that are suggested by a table, whose construction is made according
to the sum of the second line of its matrix representation, found in [5].

The general term
(1 + q)(1 + q2) · · · (1 + qs)q1+2+3+···+s

(1− q)(1− q3) · · · (1− q2s+1)
,

is the generating function for partitions of n into parts of two different colours:

• dark gray parts, ranging from 1 to s, with no gaps, and each part having multiplicity 1 or 2;

• any number of light gray odd parts less than or equal to 2s+ 1.
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In [5], we find the following combinatorial interpretation for this function in terms of two-line
matrices.

Theorem 2.1. The coefficient of qn in the expansion of (1) is equal to the number of elements in
the set of matrices of the form

A =

(
c1 c2 · · · cs
d1 d2 · · · ds

)
, (2)

with non-negative integer entries satisfying

cs = 0;

ct = it + ct+1 + 2dt+1, with it ∈ {1, 2}, ∀t < s;

n =
∑

ct +
∑

dt.

Notation 1. From now on, in order to differentiate dark and light gray parts, we indicate the light
ones by writing them inside a box. So, a partition in which (5, 3, 1, 1) are the light parts and
(2, 1, 1) are the dark gray ones will be expressed by

( 5 , 3 , 2, 1 , 1 , 1, 1).

Example 2.2. Looking at the first few terms of the expansion

ρ(q) = 1 + 2q + 3q2 + 4q3 + 6q4 + 8q5 + 11q6 + 14q7 + 18q8 + 24q9 + · · · ,

we can see that there are 11 partitions of 6 into parts we described above. Consequently, there
are 11 matrices of type (2) whose sum of its terms is equal to 6. They are shown below.

The entries in the second row of the matrices of type (2) describe the light gray odd parts of
the partition associated to each matrix. To know how many of these parts the partition has, we
have to sum the di, for i = 1, 2, . . . , s+ 1.

Definition 2.3. Let pρ(n, k) be the number of partitions of n into parts of two different colours,
counted by the general term of (1), having k light gray odd parts. We denote by Pρ(n, k) the set
of partitions counted by pρ(n, k).

Example 2.4. pρ(10, 3) = 5 and Pρ(10, 3) =
{

( 3 , 3 , 3 , 1), ( 3 , 3 , 2, 1 , 1),

( 5 , 2, 1 , 1 , 1, 1), ( 3 , 2, 2, 1 , 1 , 1), (3, 2, 1 , 1 , 1 , 1, 1)
}
.

For a fixed n, we classify its partitions of type described in Definition 2.3 according to the
sum on the second row of the matrix associated to each partition. By counting the appearance of
each number in these sums, we can organize the data on a table, which is presented next. The
entry in line n and column n − j is the number of times j appears as sum of the entries of the
second row in type (2) matrices.

By observing the table above, we see that the columns become constant below certain entries.
This result is described as follows:
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Partitions from ρ(q) Matrices of type (2)

(3, 2, 1)

(
3 2 1 0

0 0 0 0

)

(2, 2, 1, 1)

(
4 2 0

0 0 0

)

(2, 2, 1 , 1)

(
3 2 0

1 0 0

)

(2, 1 , 1 , 1, 1)

(
3 1 0

2 0 0

)

(2, 1 , 1 , 1 , 1)

(
2 1 0

3 0 0

)

( 3 , 2, 1)

(
4 1 0

0 1 0

)

( 3 , 1 , 1, 1)

(
4 0

1 1

)

( 1 , 1 , 1 , 1 , 1, 1)

(
2 0

4 0

)

( 3 , 1 , 1 , 1)

(
3 0

2 1

)

( 1 , 1 , 1 , 1 , 1 , 1)

(
1 0

5 0

)

( 1 , 1 , 1 , 1 , 1 , 1 )

(
0

6

)

Theorem 2.5. For n, k ≥ 0, we have

(i) pρ(3n+ 4 + k, n+ 1 + k) = pρ(3n+ 4, n+ 1);

(ii) pρ(3n+ 5 + k, n+ 1 + k) = pρ(3n+ 5, n+ 1).

Proof. We prove only the first item by exhibiting a bijection between the two sets of partitions.
The second one has a similar proof.

A map we build from Pρ(3n+ 4, n+ 1) to Pρ(3n+ 4 + k, n+ 1 + k) is simply described by
adding i light gray parts 1 to partitions lying in the first set. Clearly, the resulting partition lies in
the second set.

In order to check that this map is in fact a bijection, we must ensure that a partition counted
by pρ(3n+ 4 + k, n+ 1 + k) always has k light gray parts of size 1. So, let us suppose that there
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Table 1. Table from the characterization given by Theorem 2.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1
2 1 1 1
3 1 1 1 1
4 1 1 1 2 1
5 1 1 1 2 2 1
6 1 1 1 2 2 2 2
7 1 1 1 2 2 3 3 1
8 1 1 1 2 2 3 4 3 1
9 1 1 1 2 2 3 4 4 4 2
10 1 1 1 2 2 3 4 5 5 4 2
11 1 1 1 2 2 3 4 5 6 6 5 2
12 1 1 1 2 2 3 4 5 6 7 8 5 2
13 1 1 1 2 2 3 4 5 6 8 9 8 6 2
14 1 1 1 2 2 3 4 5 6 8 10 10 10 7 2
15 1 1 1 2 2 3 4 5 6 8 10 11 13 11 7 3
16 1 1 1 2 2 3 4 5 6 8 10 12 14 14 13 9 3
17 1 1 1 2 2 3 4 5 6 8 10 12 15 16 17 15 9 3
18 1 1 1 2 2 3 4 5 6 8 10 12 15 17 20 20 16 10 3
19 1 1 1 2 2 3 4 5 6 8 10 12 15 18 21 23 23 19 11 3
20 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 25 27 26 21 12 4
21 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 26 30 31 30 24 13 4
22 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 31 34 37 34 26 15 4
23 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 36 41 42 38 30 16 4
24 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 37 44 47 48 45 32 17 5
25 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 45 50 55 56 49 36 19 5

are x2j−1 light gray parts 2j − 1, with x1 < k. As each dark gray part j has multiplicity 1 + lj ,
with lj = 0 or lj = 1, then

3n+ 4 + k = (1 + l1) · 1 + (1 + l2) · 2 + · · ·+ (1 + ls) · s+
s+1∑
j=1

(2j − 1) · x2j−1

=
s∑
j=1

(1 + lj) · j +
s+1∑
j=2

(2j − 1) · x2j−1 + x1

≥
s∑
j=1

(1 + lj) · j +
s+1∑
j=2

3 · x2j−1 + x1

≥
s∑
j=1

(1 + lj) · j + 3 · (n+ 1 + k − x1) + x1.

So,

1 + k ≥
s∑
j=1

(1 + lj) · j + 3k − 2x1
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1 + k >

s∑
j=1

(1 + lj) · j + 3k − 2k

1 >
s∑
j=1

(1 + lj) · j,

which is a contradiction.

Since the columns become constant, we can see that this fixed values represent the same
sequence as the one for the number of partitions of certain integers into distinct parts. This result
is described next.

Theorem 2.6. For n ≥ 0, we have

(i) pρ(3n+ 1, n) = pd(2n+ 1),

(ii) pρ(3n+ 2, n) = pd(2n+ 2).

Proof. We prove the first item by exhibiting a bijection between sets Pρ(3n+1, n) and Pd(2n+1).
The same map also holds for item (ii).

We classify each partition lying in Pρ(3n+ 1, n) according to its largest dark gray part, which
is s, from the definition of the Mock Theta Function ρ(q). As we also know, every positive part
smaller than or equal to s must appear and there are n light gray odd parts smaller than 2s+ 1.

The following steps describe the bijection between both sets, each one of them illustrated by
an example.

• Step 1: Given a partition in Pρ(3n + 1, n), consider its Young Diagram. Split it in two parts:
the light gray and the dark gray one.

• Step 2: Decrease each light gray part by 1. Thus we get at most n light gray even parts smaller
than or equal to 2s.

• Step 3: Conjugate both partitions. In the dark gray one, as the largest part was s, now we have
exactly s parts and in the light gray one, at most 2s parts.

• Step 4: Note that all dark gray parts are now distinct, because all numbers from 1 to s must
appear. Since we have an even number of parts in the light gray partition, merge pairs
of equal parts.

• Step 5: Finally, add both partitions side by side.

Example 2.7. Taking n = 5, we start with ( 5 , 3 , 2, 2, 1 , 1 , 1 , 1), which lies in Pρ(16, 5).
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Step 1
7−→

Step 2
7−→

Step 3
7−→

Step 4
7−→

Step 5
7−→

As image of ( 5 , 3 , 2, 2, 1 , 1 , 1 , 1) we get (7, 4), which lies in Pd(11).

Note that we always merge light gray parts of even size. Hence, if in the original dark gray
partition the part s appears twice, the resulting smallest part will be even. In case it appears once,
it will be odd.

Moreover, if the dark gray part k from the original partition has multiplicity 2, the resulting
λk and λk+1 parts have the same parity. In case of multiplicity 1, they have distinct parity. We
can see this in the following two cases for n = 5.

Example 2.8. Case with dark gray parts with multiplicity 2:

( 3 , 3, 2, 2, 1 , 1 , 1 , 1 , 1, 1) 7−→ ( 2 + 5, 3, 1)

7−→

Case with dark gray parts with multiplicity 1:

( 3 , 3 , 3 , 3 , 2, 1 , 1) 7−→ ( 8 + 2, 1)

7−→

Furthermore, the number of parts in the resulting partition is the same as the number of largest
dark gray parts of size s in the original partition.
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Based on the previous remarks, we are able to describe the inverse map. Taking a partition
λ = (λ1, λ2, . . . , λs) of 2n + 1 into distinct parts, we need to know how many times each dark
gray part from 1 to s will appear in the resulting partition.

We start by observing the smallest part λs. If it is odd, the part s in the resulting partition
will have multiplicity 1. Otherwise, s will have multiplicity 2. According to this multiplicity, we
remove the first or the first two columns of λ’s Young Diagram, and also what is left from its
s-th row, and save this parts we removed. We repeat the previous step for every remaining part in
order to discover all dark gray parts of the resulting partition.

Consider the removed columns and rows from each of the s steps above. Organize the columns
by joining them side by side, and the rows by joining them one above the other, in the same order
they were removed in the previous steps. If these rows are of even size, split them into two
equal parts. After all this adjustments, conjugate the remaining partitions and add the partition
(1, 1, . . . , 1) with n parts to the light gray partition. Finally, join both partitions together.

In order to illustrate the inverse map, we describe it step-by-step in the following example.

Example 2.9. Again with n = 5, consider (6, 4, 1) which lies in Pd(11). According to the inverse
map, its image is ( 5 , 3, 2, 1 , 1 , 1 , 1 , 1, 1), as we can see next.

7−→

7−→ 7−→

7−→ 7−→

7−→ 7−→

So, the map we described is a bijection and the equality in item (i) holds.

3 Mock Theta Function σ(q)

In this section we consider the Mock Theta Function of order 6

σ(q) =
∞∑
n=0

(−q; q)nq(
n+2
2 )

(q; q2)n+1

. (3)
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Its general term
(1 + q)(1 + q2) · · · (1 + qs)q1+2+3+···+(s+1)

(1− q)(1− q3)(1− q5) · · · (1− q2s+1)
,

generates the partitions of n into parts of two different colours:

• dark gray parts, ranging from 1 to s + 1, with no gaps, the largest one with multiplicity
exactly one and the others with multiplicity 1 or 2;

• any number of light gray odd parts less than or equal to 2s+ 1.

Some partition identities we find in this section are similar to those we obtained from Table 1.
In addition, the columns of σ(q)’s table, constructed similarly to the previous one, reveal a relation
between partitions generated by σ(q) and ρ(q).

The Mock Theta Function σ(q) may also be interpreted in a combinatorial way, as given by
the next theorem, found in [5].

Theorem 3.1. The coefficient of qn in the expansion of (3) is equal to the number of elements in
the set of matrices of the form

A =

(
c1 c2 · · · cs
d1 d2 · · · ds

)
, (4)

with non-negative integer entries satisfying

cs = 1;

ct = it + ct+1 + 2dt+1, with it ∈ {1, 2}, ∀t < s;

n =
∑

ct +
∑

dt.

Example 3.2. Looking at the first few terms of the expansion

σ(q) = q + q2 + 2q3 + 3q4 + 3q5 + 5q6 + 7q7 + 8q8 + 11q9 + · · · ,

we can see that there are 11 partitions of 9 into parts we described above. Consequently, there
are 11 matrices of type (4) whose sum of the second line elements is equal to 9. They are shown
below.

The entries in the second row of the matrices of type (4) describe the light gray odd parts of
the partition associated to each matrix. To know how many of these parts the partition has, we
have to sum the di, for i = 1, 2, . . . , s+ 1.

Definition 3.3. Let pσ(n, k) be the number of partitions of n into parts of two different colours,
counted by the general term of (3), having k light gray odd parts. We denote by Pσ(n, k) the set
of partitions counted by pσ(n, k).

For a fixed n, we classify its partitions of type described in Definition 3.3 according to the sum
on the second row of the matrix associated to each partition. Similar to the one in the previous
section, we construct a table whose entry in line n and column n − j is the number of times j
appears as sum of the entries of the second row in type (4) matrices.
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Table 2. Table of partitions from Example 6

Partitions from σ(q) Matrices of type (4)

(3, 2, 2, 1, 1)

(
5 3 1

0 0 0

)

(3, 2, 2, 1 , 1)

(
4 3 1

1 0 0

)

(3, 2, 1 , 1 , 1, 1)

(
4 2 1

2 0 0

)

(3, 2, 1 , 1 , 1 , 1)

(
3 2 1

3 0 0

)

( 3 , 3, 2, 1)

(
5 2 1

0 1 0

)

( 3 , 3 , 2, 1)

(
7 1

0 2

)

( 3 , 2, 1 , 1 , 1, 1)

(
5 1

2 1

)

(2, 1 , 1 , 1 , 1 , 1 , 1, 1)

(
3 1

5 0

)

(2, 1 , 1 , 1 , 1 , 1 , 1 , 1)

(
2 1

6 0

)

( 3 , 2, 1 , 1 , 1 , 1)

(
4 1

3 1

)

( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)

(
1

8

)

Remark 3.4. From the definition of the Mock Theta Function of order 5

1 + 2Ψ0(q) =
∞∑
n=0

(−1; q)nq
(n+1

2 ),

which represents partitions whose parts appear at most twice, the largest part s appears once and
every integer smaller than s is also a part, it is easy to see that pσ(n, 0) represents the coefficients
of the Mock Theta Function Ψ0 above.

As it happens in the table of Mock Theta Function ρ(q), the columns in the table of Mock
Theta Function σ(q) also become constant from certain values of n onwards, which leads us to
the following theorem. Its proof is analogous to the one in Theorem 2.5.
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Table 3. Table from the characterization given by Theorem 3.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1
2 1 0
3 1 0 1
4 1 0 1 1
5 1 0 1 1 0
6 1 0 1 1 1 1
7 1 0 1 1 1 2 1
8 1 0 1 1 1 2 1 1
9 1 0 1 1 1 2 2 2 1
10 1 0 1 1 1 2 2 3 2 1
11 1 0 1 1 1 2 2 3 2 3 1
12 1 0 1 1 1 2 2 3 3 4 3 1
13 1 0 1 1 1 2 2 3 3 5 4 3 2
14 1 0 1 1 1 2 2 3 3 5 4 5 4 1
15 1 0 1 1 1 2 2 3 3 5 5 6 6 3 2
16 1 0 1 1 1 2 2 3 3 5 5 7 7 6 5 2
17 1 0 1 1 1 2 2 3 3 5 5 7 7 8 8 5 1
18 1 0 1 1 1 2 2 3 3 5 5 7 8 9 10 8 6 2
19 1 0 1 1 1 2 2 3 3 5 5 7 8 10 11 11 10 6 2
20 1 0 1 1 1 2 2 3 3 5 5 7 8 10 11 13 13 10 7 2
21 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 14 15 14 13 7 3
22 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 15 16 17 18 13 8 3
23 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 15 16 19 21 18 16 9 2
24 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 15 17 20 23 22 23 17 9 3
25 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 15 17 21 24 25 28 24 19 11 3

Theorem 3.5. For n, k ≥ 0, we have

(i) pσ(3n+ 3 + k, n+ 1 + k) = pσ(3n+ 3, n+ 1);

(ii) pσ(3n+ 1 + k, n+ k) = pσ(3n+ 4, n+ 1).

The fixed values in σ’s table columns are also related to partitions of certain integers into
distinct parts, greater than or equal to 2. This result is described next.

Theorem 3.6. Denoting by pd(n,≥ k) the number of partitions into distinct parts greater than
or equal to k, for n ≥ 1 we have

(i) pσ(3n, n− 1) = pd(2n,≥ 2);

(ii) pσ(3n+ 1, n− 1) = pd(2n+ 1,≥ 2).

Proof. Again, this theorem is proved by setting a bijection between two different sets of parti-
tions. In order to avoid extensive details, we only highlight some adjustments we make in the
proof of Theorem 2.6, so that we have an analogous proof for Theorem 3.6.
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When in Theorem 2.6 we decreased by one each part from the light gray partition, now we
must also decrease the largest dark parts by one. It is possible since we always have one dark
part. The remaining steps are equal to the original map.

In the inverse map, we set how many dark gray parts we would have according to the parity of
the parts. Unlike there, now if λi is odd, there will be two parts of size i in the resulting partition.
Otherwise there will be just one part of size i. This occurs because now we have the dark part
s+ 1, which does not appear in ρ(q).

By observing the constant values in the columns of Tables 1 and 3, we can observe that the
sum of two certain numbers in Table 3 also appears in Table 1. This property is proved next.

Corollary 3.7. For all n ≥ 1, we have:

(i) pσ(3n, n− 1) + pσ(3n+ 1, n− 1) = pρ(3n+ 1, n);

(ii) pσ(3n+ 1, n− 1) + pσ(3n+ 3, n) = pρ(3n+ 2, n).

Proof. Both items have analogous proofs, so we present only the proof of item (i).
By Theorems 2.6 and 3.6, statement (i) is equivalent to

pd(2n+ 1,≥ 2) + pd(2n,≥ 2) = pd(2n+ 1).

This identity can be easily proved by splitting the set whose cardinality is counted by
pd(2n + 1) into two new ones: one of partitions of 2n + 1 into distinct parts with no part of
size 1, and the other of partitions of 2n + 1 into distinct parts having 1 as a part. Noting that the
last set has cardinality equal to pd(2n,≥ 2), the corollary follows.

Combining Corollary 3.7 and Theorems 2.5 and 3.5, we get another relation between Mock
Theta Functions ρ(q) and σ(q).

Corollary 3.8. For all n ≥ 1, we have

pσ(2n− 1, n− 1) + pσ(2n+ 1, n) = pρ(2n− 1, n− 1).

Although Corollary 3.8 can be obtained from previous results, alternatively we can demon-
strate it by a bijective proof, which is described next.

Alternative proof for Corollary 3.8. Let Pρ(2n− 1, n− 1) be the set of all partitions counted by
pρ(2n− 1, n− 1), and define its two disjoint subsets as follows.

• Pρ(2n − 1, n − 1)∗ : the set of partitions such that, if s is the largest dark part, it appears
twice, or the largest light part is 2s+ 1.

• Pρ(2n− 1, n− 1)# : the set of partitions such that the largest dark part s appears once and
the largest light part is smaller than or equal to 2s− 1. So we have

Pρ(2n− 1, n− 1) = Pρ(2n− 1, n− 1)# ∪ Pρ(2n− 1, n− 1)∗
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Now, separate all the partitions according to the set they belong. As an example, take n = 9:

Pρ(17, 8)

Pρ(17, 8)
#

( 3 , 3 , 3 , 2, 1 , 1 , 1 , 1 , 1 , 1)

( 3 , 3, 2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1, 1)

(3, 2, 2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1, 1)

Pρ(17, 8)
∗

( 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 , 1)

( 5 , 3 , 2, 1 , 1 , 1 , 1 , 1 , 1 , 1)

( 3 , 3 , 2, 2, 1 , 1 , 1 , 1 , 1 , 1 , 1)

( 5 , 2, 2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)

(3, 3, 2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)

It is easy to see that Pρ(2n− 1, n− 1)# = Pσ(2n− 1, n− 1). So, it remains to be proved that
|Pρ(2n−1, n−1)∗| = |Pσ(2n+1, n)|, which is done by exhibiting a bijection between both sets.
Let λ be a partition lying in Pρ(2n − 1, n − 1)∗. We define the map according to the following
steps:

• If the largest dark part s of λ appears twice, increase one of them by 1 and add 1 as a
light gray part. Thus we have a partition of 2n+ 1 into n light gray parts and the dark ones
ranging from 1 to s + 1, with possible repetition of parts between 1 and s − 1. Hence, a
partition lying in Pσ(2n+ 1, n).
• In case s appears once and the largest light gray part of λ is 2s+ 1 , split it into two new

dark parts s and s + 1. Then add two light parts 1 . Once again, we have a partition lying
in Pσ(2n+ 1, n) with dark parts 1, . . . , s, s, s+ 1.

For example, for n = 9 it works as follows.

( 3 , 3 , 3 , 3 , 1 , 1 , 1 , 1 ,1) 7−→ ( 3 , 3 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1,1)

( 5 , 3 ,2, 1 , 1 , 1 , 1 , 1 , 1 ,1) 7−→ ( 3 ,3,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 3 , 3 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 ,1) 7−→ ( 3 , 3 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

( 5 ,2,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1) 7−→ ( 5 ,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1)

(3,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1) 7−→ (4,3,2, 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,1).

The inverse map depends on how many dark parts of size s the partition lying in Pσ(2n+1, n)

has. In case it has two, merge one part of size s and one of size s + 1, getting a light gray
part 2s+ 1 , and remove two parts 1 . Otherwise, decrease the part s + 1 by 1 and remove one
part 1 .
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4 Mock Theta Function ν(q)

Overlooking signs in coefficients of Mock Theta Function of order 5

ν(q) =
∞∑
n=0

qn
2+n

(−q; q2)n+1

,

we see that they represent some kind of partitions, as before, related to certain partitions into
distinct parts. In this section, we present these relations and also an identity that easily follows
from a formula found in [2].

Consider the unsigned version of function ν(q),

ν(−q) =
∞∑
n=0

qn
2+n

(q; q2)n+1

. (5)

Its general term
q2+4+6+···+2s

(1− q)(1− q3) · · · (1− q2s+1)

generates the partitions of n containing exactly one copy of each of the even parts 2, 4, . . . , 2s and
any number of the odd parts less than or equal to 2s+1. Again, we can find in [5] an interpretation
in terms of two-line matrices for this partitions.

Theorem 4.1. The coefficient of qn in the expansion of (5) is equal to the number of elements in
the set of matrices of the form

A =

(
c1 c2 · · · cs+1

d1 d2 · · · ds+1

)
, (6)

with non-negative integer entries satisfying

cs+1 = 0;

ct = 2 + ct+1 + 2dt+1, ∀t ≤ s;

n =
∑

ct +
∑

dt.

The entries in the second row of the matrices of type (6) describe the odd parts from 1 to
2s + 1 of the partition associated to each matrix. To know how many of these parts the partition
has, we have to sum the di, for i = 1, 2, . . . , s.

Definition 4.2. Let pν(n, k) be the number of partitions of n counted by the general term of (5),
having k odd parts between 1 to 2s + 1. We denote by Pν(n, k) the set of partitions counted by
pν(n, k).

For a fixed n, we classify its partitions of type described in Definition 4.2 according to the
sum on the second row of the matrix associated to each partition. We construct a table (see Table
4) in the same way we did for functions ρ(q) and σ(q), now for Mock Theta Function ν(q).

By observing the table above we get some interesting results.

67



Table 4. Table from the characterization given by Theorem 4.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 0
2 1 0 1
3 1 0 1 0
4 1 0 1 0 0
5 1 0 1 0 1 0
6 1 0 1 0 1 0 1
7 1 0 1 0 1 0 1 0
8 1 0 1 0 1 0 2 0 0
9 1 0 1 0 1 0 2 0 1 0
10 1 0 1 0 1 0 2 0 1 0 0
11 1 0 1 0 1 0 2 0 2 0 1 0
12 1 0 1 0 1 0 2 0 2 0 2 0 1
13 1 0 1 0 1 0 2 0 2 0 2 0 1 0
14 1 0 1 0 1 0 2 0 2 0 3 0 2 0 0
15 1 0 1 0 1 0 2 0 2 0 3 0 3 0 1 0
16 1 0 1 0 1 0 2 0 2 0 3 0 3 0 2 0 0
17 1 0 1 0 1 0 2 0 2 0 3 0 4 0 3 0 1 0
18 1 0 1 0 1 0 2 0 2 0 3 0 4 0 4 0 2 0 0
19 1 0 1 0 1 0 2 0 2 0 3 0 4 0 4 0 3 0 1 0
20 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 4 0 2 0 1
21 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 5 0 4 0 1 0
22 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 5 0 5 0 3 0 0
23 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 6 0 6 0 4 0 1 0
24 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 6 0 7 0 6 0 2 0 0
25 1 0 1 0 1 0 2 0 2 0 3 0 4 0 5 0 6 0 7 0 7 0 4 0 1 0

Remark 4.3. It is clear to see that, for all n ≥ 1, we have

pν(n, 0) =

{
1, if n = s2 + s

0, otherwise.

and

pν(n, 1) =

{
1, if n is odd

0, if n is even.

Theorem 4.4. For all n ≥ 1 and i = 0, 2, 4, we have

pν(4n
2 − 2n+ i, 2) = n.

Proof. If i = 0, the largest even part of any partition counted by pν(4n2−2n, 2) has to be 4n−4.
So, we have to write

4n2 − 2n = 2 + 4 + · · ·+ 4n− 4 + r + s,

with odd r and s and 1 ≤ s ≤ r ≤ 4n− 3, which implies

r + s = 4n− 2.
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Equivalently, writing r = 2p − 1 and s = 2q − 1, with 1 ≤ q ≤ p ≤ 2n − 1, we have to
determine the number of solutions of equation p+ q = 2n, with 1 ≤ q ≤ p ≤ 2n− 1.

First of all, the number of positive solutions of equation p + q = 2n with no limitation for p
and q ≤ p is

⌊
2n
2

⌋
= n. The solutions we do not want are those where p > 2n − 1. Although,

note that p > 2n− 1 implies p = 2n, and so q = 0, which never occurs. So, there is no solution
to eliminate and the number we are looking for is just n.

If i = 2 or 4, there is only one partition counted by pν(4n2 − 2n + i, 2) with largest even
part 4n − 2. Indeed, 2 + 4 + · · · + 4n − 2 + r + s = 4n2 − 2n + i, with odd r and s and
1 ≤ s ≤ r ≤ 4n − 1, implies r + s = i. As in those conditions 2 and 4 can only be written as
1 + 1 and 3 + 1, respectively, there is only one partition counted by pν(4n2 − 2n+ i, 2) with the
largest part 4n− 2. The other partitions have the largest even part equal to 4n− 4. So,

4n2 − 2n+ i = 2 + 4 + · · ·+ 4n− 4 + r + s,

with odd r and s and 1 ≤ s ≤ r ≤ 4n− 3, which implies

r + s = 4n− 2 + i.

Again writing r = 2p−1 and s = 2q−1, with 1 ≤ q ≤ p ≤ 2n−1, and i = 2j, it is equivalent
to determine the number of solutions of equation p+ q = 2n+ j, with 1 ≤ q ≤ p ≤ 2n− 1.

The number of positive solutions of equation p + q = 2n + j with no limitation for p and
q ≤ p is

⌊
2n+j
2

⌋
. The solutions we do not want are those where p > 2n − 1. As q has to be at

least 1 and p > 2n− 1, we can write

p = 2n− 1 + k with 1 ≤ k ≤ j,

and so, for each value of k we get one value of p.
Then, the number of solutions we want is⌊

2n+ j

2

⌋
− j = n− 1.

Adding these to the other solution we already have, we get pν(4n2 − 2n + i, 2) = n, for
i = 0, 2, 4.

As it happens in Tables 1 and 3, the columns in Table 4 become constant from certain values
of n onwards. This fact can be proved analogously to those in Theorems 2.5 and 3.5. Hence, we
omit the proof of the next theorem.

Theorem 4.5. For all n ≥ 0 and i ≥ 0, we have

pν(3n+ 2 + i, n+ i) = pν(3n+ 2, n).

The constant values in the columns of the table are also related to certain partitions into
distinct parts.

Theorem 4.6. For all n ≥ 0 and i ≥ 0, we have

pν(3n+ 2, n) = pd(n+ 1).
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Proof. Let λ = (λ1, λ2, . . . , λk) ∈ Pd(n + 1). We describe how to associate λ to a partition
µ ∈ Pν(3n+ 2, n) step-by-step and illustrate it with an example.

• Step 1: As λ has k distinct parts, subtract and save k, k − 1, k − 2, . . . , 1 from λ1, λ2, . . . , λk,
respectively.

• Step 2: Conjugate the remaining partition and call the new parts r1, r2, . . . , rλ1−k.

• Step 3: Double the partitions (k, k − 1, k − 2, . . . , 1) and (r1, r2, . . . , rλ1−k) and add 1 to each
part ri.

• Step 4: Join the partitions.

• Step 5: Add n− (λ1 − k) parts of size 1.

Overlooking the order of the parts, the partition µ obtained with the steps above is the partition

µ = (2k, 2(k − 1), 2(k − 2), . . . , 2, (2r1 + 1), . . . , (2rλ1−k + 1), 1, 1, . . . , 1︸ ︷︷ ︸
n−(λ1−k)

).

The partition µ really lies in Pν(3n + 2, n), because every even part from 2 to 2k appears
exactly once, 2ri + 1 ≤ 2k + 1 for all ri ≤ k, the odd parts are in number of n and

2k + 2(k − 1) + · · ·+ 2 + (2r1 + 1) + · · ·+ (2rλ1−k + 1) + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n−(λ1−k)

= k(k + 1) + 2(r1 + · · ·+ rλ1−k) + λ1 − k + n− (λ1 − k)

= k(k + 1) + 2(n+ 1− k(k + 1)

2
) + n

= 3n+ 2.

The inverse map is easy to build.

Example 4.7. For n = 37, consider

λ = (11, 9, 8, 5, 3, 2) and µ = (13, 12, 10, 9, 8, 7, 7, 6, 4, 3, 2 1, 1, . . . , 1︸ ︷︷ ︸
32 times

).

The following diagram illustrates how to get from λ to µ.

7−→

Step 1
7−→

Step 2
7−→
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Step 3
7−→

7−→

Step 4
7−→

Step 5
7−→

1
2
· ·
· ·
· ·

31
32

By replacing x and y by q in Equation 6 at page 29 of [2], we get the next identity. Although
it is already proved, we present a new combinatorial way to demonstrate it.

Theorem 4.8. We have the identity

∞∑
n=0

qn(n+1)

(q; q2)n+1

=
∞∑
n=0

(−q; q2)nqn. (7)

Proof. Let us consider the two following sets of partitions:

• N(n): The set of partitions of n such that, if 2s is the largest even part, then all parts
2, 4, . . . , 2s must appear exactly once, any odd part must be smaller than 2s + 1 and may
appear in any number.
• Λ(n): The set of partitions of n into dark gray and light gray parts such that there is only
one dark part s and the light parts must be distinct odd parts, smaller than 2s− 1.

Note that the left and right hand sides of equality (7) are the generating functions for partitions
lying in N(n) and Λ(n), respectively. If we prove that |N(n)| = |Λ(n)|, the theorem follows. So,
we describe step-by-step a map from N(n) to Λ(n).
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• Step 1: Given a partition counted by N(n), consider its corresponding Young Diagram. Sepa-
rate even and odd parts, getting two new diagrams.

• Step 2: As each even part appears exactly once and the greatest one is 2s, change the s even
parts for s parts of size s+ 1. Then, subtract and save one unit from each odd part.

• Step 3: As the partition into odd parts has turned into one with even parts, split each of these
parts into two parts of equal size.

• Step 4: Join all the partitions together (for more details see Example 4.9) and then subtract and
save one unit from each part of the new diagram.

• Step 5: Turn the removed units into a dark part.
• Step 6: The light gray parts are obtained by making hooks with the remaining rows and columns:

for the first part, take the first row together with the first column; for the second part,
take what is left from the second row together with what is left from the second column.
Keep doing this process until there are no more squares left in the old diagram.

• Step 7: Finally, get the parts together.

Example 4.9. We illustrate how to get partition ( 11 , 9, 5 , 1 ) ∈ Λ(26) from partition
(6, 5, 4, 3, 3, 2, 1, 1, 1) ∈ N(26).

Step 1
7−→

Step 2
7−→

Step 3
7−→

Step 4
7−→

Step 5
7−→

Step 6
7−→ 7−→
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The resulting light gray parts are odd because the parts below the Durfee Square of the parti-
tion after Step 5 appear in pairs. This also proves that these parts are distinct.

Note that the unique dark part of the resulting partition is equal to the number of parts of the
original partition (s plus the number of odd parts). The largest light part is, at most, 2 times the
number of odd parts plus 2s− 1. So, the resulting partition lies in Λ(n).

To describe the inverse map, take the dark part and draw it as a column. Besides it, build
a square with side equal to the number of light gray parts of the partition. Below this square,
display the remaining parts as hooks to complete the Young Diagram. The steps that complete
the inverse map are easy to see and we illustrate them in the next example.

Example 4.10. Considering the partition ( 11 , 9, 5 , 1 ) ∈ Λ(26), we set the way back to
(6, 5, 4, 3, 3, 2, 1, 1, 1) ∈ N(26).

( 11 , 9, 5 , 1 ) 7−→ + ( 11 , 5 , 1 ) 7−→

7−→ 7−→ 7−→

7−→ 7−→ (6, 5, 4, 3, 3, 2, 1, 1, 1)

Thus, with the maps we described above we have set a bijection between N(n) and Λ(n) and,
therefore, equality (7) holds.

From Theorem 4.8, changing q by −q, we have the following corollary.

Corollary 4.11. We have the identity

ν(q) =
∞∑
n=0

(−1)n(q; q2)nq
n.
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Remark 4.12. Knowing the Mock Theta Function

λ(q) =
∞∑
n=0

(−1)n(q; q2)nq
n

(−q; q)n
,

we set the two-variable generating function for λ(q)

λ(q, z) =
∞∑
n=0

(−1)n(q; q2)nq
n

(−zq; q)n
.

Considering the coefficient of z0, we get the generating function
∞∑
n=0

(−1)n(q; q2)nq
n, which is

equal to ν(q).

Having analogous representation for other Mock Theta Functions, we hope to obtain more
relations and identities for different types of partitions.
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