Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 16, 2010, Number 4, Pages 18–24
Full paper (PDF, 126 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Abstract
Two new sequences from Fibonacci type are introduced and the explicit formulae for their n-th members are given.
Keywords
- Fibonacci sequence
- 2-Fibonacci sequence
AMS Classification
- 11B39
References
- Atanassov, K. An arithmetic function and some of its applications. Bull. of Number Theory and Related Topics, Vol. IX (1985), No. 1, 18-27.
- Atanassov K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 24 (1986), No. 4, 362-365.
- Atanassov, K., Combined 2-Fibonacci sequences. Notes on Number Theory and Discrete Mathematics, Vol. 16, 2010, No. 1, 24-28.
- Atanassov K., L. Atanassova, D. Sasselov, A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 23 (1985), No. 1, 21-28.
- Atanassov K., V. Atanassova, A. Shannon, J. Turner, New Visual Perspectives on Fibonacci Numbers. World Scientic, New Jersey, 2002.
- Lee J.-Z., J.-S. Lee, Some properties of the generalization of the Fibonacci sequence. The Fibonacci Quarterly, Vol. 25 (1987) No. 2, 111-117.
- Shannon A., R. Melham, Carlitz generalizations of Lucas and Lehmer sequences, The Fibonacci Quartarly, Vol. 31 (1993), No. 2, 105-111.
Related papers
Cite this paper
Atanassov, K. T. (2010). Combined 2-Fibonacci sequences. Part 2. Notes on Number Theory and Discrete Mathematics, 16(4), 18-24.